
Extended double-complex linear systems and new
multiple infinite-dimensional hidden symmetries
for the general symplectic gravity models

Ya-Jun Gaoa�

Department of Physics, Bohai University, Jinzhou 121013, Liaoning,
People’s Republic of China

�Received 2 June 2007; accepted 3 October 2007; published online 6 November 2007�

By using a so-called extended double �ED�-complex method, the previously found
doubleness symmetry for each member of the class of general symplectic gravity
models is further exploited and extended. A 2�n+1��2�n+1� matrix double-
complex H-potential is constructed for any non-negative integer n, and the motion
equations in two dimensions are written in a double-complex formulation. A
double-duality mapping is proposed and two pairs of ED-complex Hauser-Ernst-
type linear systems �J. Math. Phys. 21, 1126 �1980�� are established. Based on
these linear systems, explicit formulations of new multiple hidden symmetry trans-
formations for the studied theories are given. For any fixed n, these symmetry
transformations are verified to constitute multiple infinite-dimensional Lie algebras,

each of which is a semidirect product of the Kac-Moody sp�2�n+1̂� ,R� and Vira-
soro algebras �without center charges�. These results demonstrate that the ED-
complex method is necessary and more effective, and the general symplectic grav-
ity models under consideration possess much richer symmetry structures than
previously expected. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2801880�

I. INTRODUCTION

In the recent past, the studies of symmetries for the dimensionally reduced low energy effec-
tive �super�string theories have attracted much attention because of their importance in theoretical
and mathematical physics �see, e.g., Refs. 1–17�. Such effective string theories describe various
interacting matter fields coupled to gravity. The Einstein-Maxwell-dilaton-axion �EMDA�
theory3,8,9,11,14,15 is a typical and important model of this kind. In Ref. 18, Kechkin and Yurova
developed a series of symplectic gravity models, each of them is a generalization of the EMDA
theory so that it describes a coupled system of n Abelian vector fields and the symmetric n�n
matrix extensions of the dilaton and Kalb-Ramond fields for n=1,2 , . . . . We call these general
symplectic gravity models “SGM-n” theories for brevity. Thus the EMDA theory is the case of
SGM-1. Some symmetries of the SGM-n theories have been found and some analogies between
the SGM-n �n�1� and the reduced vacuum Einstein theories have been noted. However, many
scalar functions in pure gravity correspond, formally, to matrix ones in the SGM-n theories, thus
the noncommuting property of the matrices gives rise to essential complications for the further
study of the latter. Moreover, some particular relations, such as for any 2�2 matrix A: AT�A
= �det A��, AT�+�A= �tr A�� �with �= � 0

−1
1
0

��, have no general analogs for higher dimensional m
�m �m�3� matrices, while these relations are important and useful in some studies of the
reduced vacuum gravity �e.g., Refs. 19–23�. Since in the investigations of the SGM-n �n�1�
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theories we mainly deal with 2�n+1��2�n+1� matrix functions, some deeper researches and
further extended studying methods are needed.

The present paper is a continuation of our previous paper.24 In this paper, by using a so-called
extended double �ED�-complex function method,25 the previously found doubleness symmetry24

of the stationary axisymmetric �SAS� SGM-n theories is further exploited and extended. Double-
complex 2�n+1��2�n+1� matrix H-potentials are constructed and the motion equations are ex-
tended into double-complex form in terms of these H-potentials. Moreover, we further find that the
theories under consideration possess more double symmetries so that, for each n, a double-duality
mapping can be introduced and two pairs of ED-complex Hauser-Ernst �HE�-type linear systems
can be established. Based on these linear systems, new infinitesimal multiple symmetry transfor-
mations for the SGM-n theories are explicitly constructed. Then these symmetry transformations
are verified to constitute some multiple infinite-dim Lie algebras. For each fixed n, one of these

multiple Lie algebras is a semidirect product of the Kac-Moody sp�2�n+1̂� ,R� and Virasoro
algebras �without center charges�. These results demonstrate that the ED-complex method is
necessary and more effective, and the theories under consideration possess much richer symmetry
structures than previously expected.

In Sec. II, some related concepts and notations of the ED-complex functions25 and the double-
complex matrix Ernst formulation of the SGM-n field equations24 are briefly recalled. In Sec. III,
double-complex H-potentials are constructed and a pair of ED-complex HE-type linear systems
are established for each n. In Sec. 4, by virtue of these linear systems, we give explicit expressions
of some infinitesimal double transformations for the studied theories and then verify that these
transformations are all double hidden symmetries leaving the SGM-n motion equations and related
conditions invariant. The double infinite-dim Lie algebra structures of these hidden symmetries are
calculated out in Sec. V. In Sec. VI, to each fixed n, a double-duality mapping is introduced,
another pair of ED-complex HE-type linear systems are established, and the associated infinitesi-
mal double symmetry transformations are explicitly given, these constitute another double infinite-
dim symmetry Lie algebras of the studied theories. Finally, Sec. VII gives some summary and
discussions.

II. ED-COMPLEX FUNCTION AND DOUBLE-COMPLEX MATRIX ERNST EQUATIONS
OF THE SGM-n THEORIES

For later use, here we briefly recall some related concepts and notations of the ED-complex
function25 and the double-complex matrix Ernst formulation of the SGM-n field equations.24

A. ED-complex function25

Let i and J denote, respectively, the ordinary and the ED imaginary unit. We shall concern
ourselves mainly with some special values of J, i.e., J= j�j2=−1, j� ± i� or J=���2= +1,�
� ±1�. If a series �n=0

� �an � ,an�C �ordinary complex number� is convergent, then a�J�
=�n=0

� anJ2n is called an ED ordinary complex number, which can correspond to a pair �aC ,aH� of
ordinary complex number, where aCªa�J= j�, aHªa�J=��. When a�J� and b�J� both are ED
ordinary complex numbers,

c�J� = a�J� + Jb�J� �2.1�

is called an ED-complex number, it can correspond to a pair �cC ,cH�, where cCªc�J= j�=aC

+ jbC, cHªc�J=��=aH+�bH. If a�J� and b�J� are real, we call them double real and call the
corresponding c�J� simply a double-complex number.

We would like to point out that, from the above definitions, J should be taken as an indeter-
minate rather than a discrete variable. The ED-complex method can be regarded as some “defor-
mation” theory, in which J plays the role of “deformation parameter” �or analytical link, cf. Ref.
26 for nonextended case�. By doubleness symmetry we, in fact, mean the symmetry property of
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the considered theory under this deformation. We call it an ED-complex method only because in
most of its applications �e.g., in the present paper� we are mainly interested in the cases of J= j and
J=�.

All ED-complex numbers with usual addition and multiplication constitute a commutative
ring. Corresponding to the two imaginary units J and i in this ring, we have two complex conju-
gations: ED-complex conjugation “�” and ordinary complex conjugation “�,”

c�J��
ª a�J� − Jb�J�, c�J� ª a�J� + Jb�J� . �2.2�

These imply that J�=−J, J̄=J, i�= i, ī=−i. If a�J� and b�J� are ED ordinary complex functions of
some ordinary complex variables z1 , . . . ,zn, then c�z1 , . . . ,zn ;J�=a�z1 , . . . ,zn ;J�+Jb�z1 , . . . ,zn ;J�
is called an ED-complex function. We say c�z1 , . . . ,zn ;J� to be continuous, analytical, etc., if
a�z1 , . . . ,zn ;J� and b�z1 , . . . ,zn ;J� both, as ordinary complex functions, have the same properties.
We also need ED-complex �function� matrices, and for an ED-complex matrix W�J�, we define

W�J�†
ª �W�J���T, �2.3�

“T” denotes the transposition. The ED imaginary unit commutation operator “�” is defined as

�: J → J̊, J̊ = �, �̊ = j . �2.4�

Obviously, J̊ is the ED imaginary unit, too.

B. Double-complex matrix Ernst formulation of the SGM-n field equations24

The actions of class of SGM-n theories in four-dim are18

S =� �− R + Tr� 1
2 ��pp−1�2 − pFFT + 1

3 �pH�2�	
− gd4x , �2.5�

where g�� is the metric �signature 	 � � � �, � ,�=0,1 ,2 ,3�, R is the Ricci scalar, g
=det�g���, p is a symmetric n�n matrix with scalar field components �for the EMDA case, p
=e−2
, 
 is the dilaton field�, and

F�� = ��A� − ��A�, H��� = ��B�� − 1
2 �A�F��

T + F��A�
T� + cyclic, �2.6�

in which A� is an n�1 column of Abelian vector fields and B�� is an extension of the usual
Kalb-Ramond tensor field, here each Lorentz component of B�� �� ,�=0,1 ,2 ,3� is a symmetric
n�n matrix and among these matrices there are relations B��=−B��. The SGM-n action �2.5�
gives the pure Einstein and the EMDA theories, respectively, when n=0 and n=1 and provides
their generalization for an arbitrary non-negtive integer n.

Now we consider the SAS case, in which the 4 dim space-time metric can be written as27

ds2 = fABdxAdxB − e�LNdxLdxN �A,B = 0,1,L,N = 2,3� , �2.7�

and fAB can be parametrized as

fAB = � f − f�

− f� f�2 − �2f−1 � . �2.8�

After reducing to the SAS case, in addition to the above metric variables, the set of SGM-n
dynamical quantities contains two Lorentzian components A0 ,A1 of the n�1 column four-
potential A�, one nontrivial Lorentzian component B01 of the n�n matrix extended Kalb-Ramond
field B��, and the n�n symmetric matrix p of the Lorentzian scalar fields. And all of these fields
are assumed to depend only on x2, x3. For simplicity, we denote x2, x3 by x, y in the following. In
terms of these, the essential dynamical equations of the SAS SGM-n theory can be written as18
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d��−1P*dQP� = 0, d��*dPP−1 + �−1P*dQPQ� = 0, �2.9�

and �=��x ,y��0 is a harmonic function in 2 dim �x ,y	. Where the notations of differential form
are adopted, “ *” is the dual operation of 2 dim Euclidian space, the �n+1�� �n+1� symmetric real
matrices P and Q are defined by

P = � f − 2A0
TpA0 − 
2A0

Tp

− 
2pA0 p
� ,

Q = � � − 
2�A1 + �A0�T

− 
2�A1 + �A0� �A1 + �A0�A0
T + A0�A1 + �A0�T − B01

� . �2.10�

Thus, if P and Q are known, we can directly obtain the original fields f , �, A0, A1, B01, and p.
Moreover, according to the Einstein equations,18,27 the field ��x ,y� in �2.7� can be obtained by a
simple integration provided P, Q are known, so we shall focus our attention on Eqs. �2.9�.

As pointed out in Ref. 24, the SAS SGM-n theories possess a so-called doubleness symmetry
such that the Eqs. �2.9� can be extended into a double-complex matrix Ernst-like formulation,

�−1d��*dE�J�� = dE�J�P�J�−1*dE�J� , �2.11�

where E�J�= P�J�+JQ�J� �with P�J�, Q�J� both being double-real �n+1�� �n+1� symmetric ma-
trices� is called a matrix double-complex Ernst-like potentials of the SAS SGM-n theories, and the
wedge symbol “∧” in exterior products of differential forms is omitted for simplicity. If a solution
E�J� of Eq. �2.11� is known, we can obtain a pair of real solutions of the SAS SGM-n theory.

III. DOUBLE-COMPLEX H-POTENTIALS AND ED-COMPLEX HE-TYPE LINEAR
SYSTEMS

We introduce a double-real 2�n+1��2�n+1� matrix function M�J�=M�x ,y ;J�, which satis-
fies

M�J�T = M�J� , �3.1a�

M�J��M�J� = J2�2� , �3.1b�

� ª � 0 In+1

− In+1 0
� , �3.1c�

where In+1 is the �n+1�-dim unit matrix. Taking the Gauss decomposition of M�J� as

M�J� = � P�J� − P�J�Q�J�
− Q�J�P�J� Q�J�P�J�Q�J� + J2�2P�J�−1 � , �3.2�

and noticing �2.4�, Eq. �2.11� can be equivalently written as

d��−1M�J��*dM�J�� = 0. �3.3�

According to the spirit of Ref. 24, if a solution of Eq. �3.3� with conditions �3.1a�, �3.1b�, and
�3.1c� is known, then by the decomposition �3.2�, we can obtain real solutions of the SGM-n
theory in pairs as follows:

�P,Q� = �PC,QC� , �3.4a�
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�P̂,Q̂� = �T�PH�,VPH
�QH�� , �3.4b�

where the transformations T, V are defined by

T:P → T�P� = �P−1,

V:P,Q → VP�Q� =� �−1P��yQ�Pdx − �−1P��xQ�Pdy , �3.5�

and the existence of VPH
�QH� is ensured by the J=� case of Eq. �3.3�. Obviously, Eqs. �3.3� and

�3.1� are invariant under the global transformations: M�J�→GTM�J�G, G�Sp�2�n+1� ,R�. Of
course, also as will be seen in the following, the symmetry structures of the considered theories are
very much richer than this.

Equation �3.3� implies that we can introduce a double-real 2�n+1��2�n+1� matrix twist
potential N�J�=N�x ,y ;J� such that

dN�J� = − �−1M�J��*dM�J� . �3.6�

Using �3.1�, we obtain from �3.6�,

dM�J� = − �−1J2M�J��*dN�J� . �3.7�

Now introducing a 2�n+1��2�n+1� matrix double-complex H-potential,

H�J� ª M�J� + JN�J� , �3.8�

and denoting �ªJ�, then Eqs. �3.6� and �3.7� can be equivalently written as a single double-
complex matrix equation,

dH�J� = − �−1M�J��*dH�J� . �3.9�

Furthermore, from �3.1� and �3.6� we have d�N�J�−N�J�T�=−2J2*d��. Thus, from the harmony of
��x ,y�, we can introduce another real field z=z�x ,y� such that *d�=dz and obtain N�J�−N�J�T=
−2J2z�. These relations and Eqs. �3.1�, �3.8�, and �2.3� imply that we can express Eq. �3.9� as

2�z + �*�dH�J� = �H�J� + H�J�†��dH�J� , �3.10�

with �3.1� this is equivalent to �3.3�. In addition, from �3.10� we can obtain

dH�J�†�dH�J� = dH�J�†�*dH�J� = 0. �3.11�

Now we introduce an ordinary complex parameter t and define

A�t;J� ª I − t�H�J� + H�J�†�� �I is the 2�n + 1�-dim unit matrix� , �3.12�

��t;J� ª t��t�−1dH�J� , �3.13�

��t� ª 1 − 2t�z + �*�, ��t�−1 = ��t�−2�1 − 2t�z − �*�� , �3.14�

��t� ª ��1 − 2zt�2 + �2�t�2�1/2, �3.15�

then Eq. �3.10� can be rewritten as

tdH�J� = A�t;J���t;J� . �3.16�

From Eqs. �3.11�, �3.12�, and �3.16�, we can obtain d��t ;J�=��t ;J����t ;J�, this is just the
complete integrability condition of the following ED-complex linear differential equation,
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dF�t;J� = ��t;J��F�t;J� , �3.17�

where F�t ;J�=F�x ,y , t ;J� is a 2�n+1��2�n+1� ED-complex matrix function of x, y, and t.
Equation �3.17� does not define F�t ;J� uniquely, so we suppress some subsidiary conditions

consistent with above equations and the requirement that F�t ;J� be holomorphic in a neighbor-
hood of t=0. From �3.16� and �3.17�, and the relation 2t�−1dz=−��t�−1d��t�, we have

dF�0;J� = 0, d�Ḟ�0;J� − H�J��F�0;J�� = 0,

d���t�F�t;J�T�F�t;J�� = 0, d�F�t;J�†�A�t;J�F�t;J�� = 0,

where Ḟ�t ;J�ª�F�t ;J� /�t and the ED-Hermitian conjugation “†” is defined by �2.3�. These equa-
tions and �3.17� determine F�t ;J� up to right multiplication by an arbitrary nondegenerate 2�n
+1��2�n+1� matrix function of t, so we can use this freedom and choose the integral constants
consistently such that

F�0;J� = I , �3.18a�

Ḟ�0;J� = H�J�� , �3.18b�

��t�F�t;J�T�F�t;J� = � , �3.19a�

F�t;J�†�A�t;J�F�t;J� = � . �3.19b�

We call Eqs. �3.17�–�3.19� an ED-complex HE-type linear system of the SGM-n theories.
Besides, we can establish another ED-complex linear system of the SGM-n theories. Now, for

another ordinary complex parameter w, we define

Ã�w;J� ª w − �H�J� + H�J�†�� , �3.20�

�̃�w;J� ª �̃�w�−1dH�J� , �3.21�

�̃�w� ª w − 2�z + �*�, �̃�w�−1 = �̃�w�−2�w − 2�z − �*�� , �3.22�

�̃�w� ª ��w − 2z�2 + �2��2�1/2. �3.23�

Then Eq. �3.10� can be rewritten as

dH = Ã�w;J��̃�w;J� , �3.24�

by derivations similar to the above, we have

dF̃�w;J� = �̃�w;J��F̃�w;J� , �3.25�

and require consistently that F̃�w ;J� be analytic around w=0 and satisfy

�̃�w�F̃�w;J�T�F̃�w;J� = � , �3.26a�

F̃�w;J�†�Ã�w;J�F̃�w;J� = � , �3.26b�

where F̃�w ;J�= F̃�x ,y ,w ;J� is another ED-complex 2�n+1��2�n+1� matrix function of x, y, and
w.
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IV. PARAMETRIZED DOUBLE SYMMETRY TRANSFORMATIONS

By virtue of solutions F�t ;J�, F̃�w ;J� of linear systems �3.17�–�3.19� and �3.25� and �3.26�,
we can explicitly construct parametrized double symmetry transformations for the SGM-n theo-
ries. At first, from definitions �3.8�, �3.12�–�3.15�, and �3.20�–�3.23�, we may consistently choose

the ED-complex matrix functions F�t ;J� and F̃�w ;J� as

F�t;J� = F�t̄;J�, F̃�w;J� = F̃�w̄;J� �4.1�

�i.e., the ED real and imaginary parts of F�t ;J� and F̃�w ;J� are double ordinary real when t and w
are real� in order to ensure the reality of M�J� and N�J� in the transformed H�J�. We shall take this
choice in the following.

We consider the following infinitesimal double transformation =�l� of potential H�J�:

H�J� = J21

l
�F�l;J�TF�l;J�−1 − T�� , �4.2�

where l is a �finite� real parameter, F�l ;J� is a solution of �3.17�–�3.19� with t being replaced by
l, T=Ta�a�sp�2�n+1� ,R� �the Lie algebra of the symplectic group Sp�2�n+1� ,R��, Ta are gen-
erators of sp�2�n+1� ,R�, and �a are infinitesimal real constants. Thus we have relation

TT� + �T = 0. �4.3�

Now we prove that �4.2� is a hidden symmetry transformation of the double-complex SGM-
n motion equation �3.10� and conditions �3.1�. First, from �4.2�, �4.3�, and �3.19a�, we have

H�J� − H�J�T = J21

l
�F�l;J�TF�l;J�−1 − T�� + J21

l
��F�l;J�T−1TTF�l;J�T − TT�

= J21

l
F�l;J��TF�l;J�−1�F�l;J�T−1 + F�l;J�−1�F�l;J�T−1TT�F�l;J�T

= J2��l�
l

F�l;J��T� + �TT�F�l;J�T = 0. �4.4�

From �3.8� and definition of z�x ,y�, Eq. �4.4� implies M�J�T=M�J� and z=0.
In addition, Eqs. �3.8�, �3.12�, and �4.4� give M�J�= �J2 /4l��A�J�−A�J���� and M�J�

= �1/2��H�J�+H�J�†�, then from �4.2�, �4.3�, and �3.19b� we have

M�J��M�J� + M�J��M�J� =
J2

8l2 ��− J2F�l;J�TF�l;J�−1 + �F�l;J�†−1T†F�l;J�†���A�J� − A�J���

+ �A�J� − A�J����− J2F�l;J�TF�l;J�−1 + �F�l;J�†−1T†F�l;J�†����

=
J2

4l2 �− J2A�J�F�l;J�TF�l;J�−1 + J2F�l;J�TF�l;J�−1A�J��

− A�J���F�l;J�†−1T†F�l;J�†� + �F�l;J�†−1T†F�l;J�†�A�J���

=
J2

4l2 ��F�l;J�†−1�TF�l;J�−1 + �F�l;J�†−1T†�F�l;J�−1

− ��l�2F�l;J�T�F�l;J�†� − ��l�2F�l;J��T†F�l;J�†��� = 0,

�4.5�

where the relations
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A�J� + A�J�� = 2�1 − 2lz�, A�J�A�J�� = ��l�2, �4.6�

and T†=TT in the real Lie algebra sp�2�n+1� ,R� have been used. Equation �4.5� implies that,
under the transformation �4.2�, the condition �3.1b� is preserved and �=0.

Now we investigate the equation satisfied by H�J�. From �4.2� and �3.17�, it follows that
d�H�= �J2 / l����l ;J�� ,F�l ;J�TF�l ;J�−1��, this and �3.13� and �3.10� further followed by

2�z + �*�d�H�J�� = �H�J� + H�J�†��d�H�J�� −
1

l
��H�J� + H�J�†��,F�l;J�TF�l;J�−1���l;J� .

�4.7�

On the other hand, from �4.2�, �4.3�, �3.12�, �3.16�, and �3.19b� we have

�H�J� + H�J�†��dH�J� =
J2

l2 �F�l;J�TF�l;J�−1� + �F�l;J�†−1T†F�l;J�†��A�l;J���l;J�

= −
1

l
��H�J� + H�J�†��,F�l;J�TF�l;J�−1���l;J� .

Substituting this into Eq. �4.7�, we finally obtain

2�z + �*�d�H�J�� = �H�J� + H�J�†��d�H�J�� + �H�J� + H�J�†��dH�J� . �4.8�

Equations �4.8�, �4.4�, and �4.5� show that H�J�+H�J� with H�J� given by �4.2� satisfies the
same equation �3.10� and conditions ��3.1a� and �3.1b�� as H�J� does, i.e., �4.2� is indeed a double
symmetry transformation for the SAS SGM-n motion equations.

Similarly, by using solution F̃�s ;J� of �3.25� and �3.26�, we can construct another param-
etrized double infinitesimal symmetry transformation of the SGM-n theory as

̃H�J� = − J2s�F̃�s;J�TF̃�s;J�−1 − T�� , �4.9�

where s is a finite real parameter.
The set of symmetry transformations of the SAS EMDA theory can be further enlarged. In

addition to �4.2� and �4.9�, we propose two other infinitesimal double transformations

�H�J� = − J2�Ḟ�l;J�F�l;J�−1� , �4.10�

�̃H�J� = J2�s�sF̃�s;J�F̃˙ �s;J�−1 + 1
2 �� , �4.11�

where l, s both are finite real parameters and �, � are infinitesimal real constants.
From �4.10� and �3.19a�,

�H�J� − �H�J�T = − J2��Ḟ�l;J�F�l;J�−1� + �F�l;J�T−1Ḟ�l;J�T� = J2���l�−1 �

�l
��l��

= − J2 2�

��l�2 �z�1 − 2lz� − 2l�2�� , �4.12�

this and the definition of z�x ,y� imply ��M�J��T=�M�J� and �z= �� /��l�2��z�1−2lz�−2l�2�.
Moreover, since M�J�= 1

2 �H�J�+H�J��� and ��M�J��T=�M�J� by �4.12�, we have

�M�J� = 1
2 ��H�J� + �H�J��� = 1

2 ��H�J�† + �H�J�T� = ��M�J��†, �4.13a�

��M�J��M�J� + M�J���M�J��† = �M�J��M�J� + M�J���M�J� . �4.13b�

Thus from �4.13a�, �3.19b�, and �4.6�, it follows that
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�M�J��M�J� + M�J���M�J�

=
J2

8l
���H�J�† + �H�J�T���A�J� − A�J��� + �A�J� − A�J�����H�J�† + �H�J�T����

=
J2

4l
��H�J�†�A�J� − A�J���H�J�†� + A�J��H�J�T� − �H�J�T�A�J����

=
�

4l
�

�

�l
F�l;J�†−1�F�l;J�−1� + �

�

�l
F�l;J�T−1�F�l;J��−1�

−
1

��l�2�A�J���
�

�l
F�l;J�†−1�F�l;J�−1A�J��� + A�J��

�

�l
F�l;J�T−1�F�l;J��−1A�J���� ,

then from �4.13b�, �3.19b�, and �4.6� we obtain

�M�J��M�J� + M�J���M�J�

=
1

2
��M�J��M�J� + M�J���M�J� + ��M�J��M�J� + M�J���M�J��†�

=
�J2

8l
 1

��l�2�A�J�� �

�l
A�J�A�J�� + A�J�

�

�l
A�J��A�J�� − � �

�l
A�J� +

�

�l
A�J�����

=
�J2

8l��l�2 �

�l
���l�2��A�J� + A�J��� − 2��l�2 �

�l
�A�J� + A�J�����

=
2�

��l�2J2�2� . �4.14�

This result shows that the double transformation �4.10� preserves the condition �3.1b� provided
��= �� /��l�2��, and we can also verify, by direct calculations, that *d����=d��z� as desired.

Now we consider the equation satisfied by the transformed fields. From �3.10�, �3.13�, �3.14�,
�4.12�, and �4.14�, we have

2��z + ��*�dH�J� = 2��z + �*���l�−1dH�J� =
�

l
�H�J� + H�J�†����l;J� . �4.15�

Moreover, from �4.10�, �3.13�, �3.14�, and �3.17� we obtain

d�H�J� = ��̇�l;J� − �J2���l;J��,Ḟ�l;J�F�l;J�−1�� . �4.16�

Multiplying �4.16� from left by 2�z+�*� and using �3.10� and �4.16� again, it follows that

2�z + �*�d�H�J� = ���H�J� + H�J�†��,Ḟ�l;J�F�l;J�−1���l;J� + �H�J� + H�J�†��d�H�J� .

�4.17�

On the other hand, from �4.10�, �3.12�, �3.16�, and �3.19b� we have

��H�J� + �H�J�†��dH�J�

= − J2�l−1�Ḟ�l;J�F�l;J�−1� + �F�l;J�†−1Ḟ�l;J�†��A�J���l;J�

= ���H�J� + H�J�†��,Ḟ�l;J�F�l;J�−1���l;J� + �l−1�H�J� + H�J�†����l;J� . �4.18�

Finally, �4.15�, �4.17�, and �4.18� give

2��z + ��*�dH�J� + 2�z + �*�d�H�J� = ��H�J� + �H�J�†��dH�J� + �H�J� + H�J�†��d�H�J� .

�4.19�
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The above results show that �4.10� is indeed a double symmetry transformation of Eq. �3.10�
with conditions �3.1a� and �3.1b�.

Similarly, we can prove that �4.11�, which gives �̃z= ��s / �̃�s�2��z�s−2z�−2�2� and �̃�

= ��s2 / �̃�s�2��, is also a double symmetry transformation of Eqs. �3.10�, �3.1a�, and �3.1b�.

V. INFINITE-DIM ALGEBRA STRUCTURES OF THE DOUBLE SYMMETRIES

From the structures of the double transformations �4.2� and �4.9�, we expand the right-hand
sides of them in powers of l and s, respectively, as

H�J� = �
m=0

�

lm�m�H�J� , �5.1a�

̃H�J� = �
k=1

�

sk̃�k�H�J� , �5.1b�

where the analytic property of F�l ;F�, F̃�s ;J� around l=0, s=0 is noted. Each of �m� and ̃�k�

satisfies the same equations and conditions as  and ̃ do, thus we have, in fact, constructed
infinite many infinitesimal double hidden symmetry transformations for each SGM-n theory. The
algebraic structures of these transformations can be obtained as follows. Noticing the dependence
of �4.2� and �4.9� on the parameters l, s and the infinitesimal constants �a in T, we denote the

corresponding transformations by ��l�, ̃��s�, respectively. Thus we have

���l�,��l���H�J� = J21

l
���l��F�l;J�F�l;J�−1,F�l;J�T�F�l;J�−1��

− J2 1

l�
���l�F�l�;J�F�l�;J�−1,F�l�;J�T�F�l�;J�−1�� , �5.2�

���l�, ̃��s��H�J� = J21

l
�̃��s�F�l;J�F�l;J�−1,F�l;J�T�F�l;J�−1��

+ J2s���l�F̃�s;J�F̃�s;J�−1,F̃�s;J�T�F̃�s;J�−1�� , �5.3�

�̃��s�, ̃��s���H�J� = − J2s�̃��s��F̃�s;J�F̃�s;J�−1,F̃�s;J�T�F̃�s;J�−1��

+ J2s��̃��s�F̃�s�;J�F̃�s�;J�−1,F̃�s�;J�T�F̃�s�;J�−1�� , �5.4�

where T�=�aTa, �l��F�l ;J�=F�l ,H�J�+�l��H�J� ;J�−F�l ,H�J� ;J�, etc.

To obtain the above commutators explicitly, we need the variations of F�l ;J�, F̃�s ;J� induced

by �l��H�J�, ̃�s��H�J�. It may be verified by tedious but straightforward calculations that we can
take

��l��F�l;J� =
l

l − l�
�F�l�;J�T�F�l�;J�−1 − F�l;J�T�F�l;J�−1�F�l;J� , �5.5�

̃��s�F�l;J� =
ls

1 − ls
�F̃�s;J�T�F̃�s;J�−1 − F�l;J�T�F�l;J�−1�F�l;J� , �5.6�

��l�F̃�s;J� =
1

1 − ls
�F�l;J�T�F�l;J�−1 − F̃�s;J�T�F̃�s;J�−1�F̃�s;J� , �5.7�
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̃��s��F̃�s;J� =
s�

s − s�
�F̃�s�;J�T�F̃�s�;J�−1 − F̃�s;J�T�F̃�s;J�−1�F̃�s;J� , �5.8�

such that F�l ;J�+��l��F�l ;J�, F�l ;J�+ ̃��s�F�l ;J� satisfy the same equation �3.17� and condi-

tions �3.18� and �3.19� as F�l ;J� does; while F̃�s ;J�+��l�F̃�s ;J�, F̃�s ;J�+ ̃��s��F̃�s ;J� satisfy the

same equation �3.25� and conditions �3.26� as F̃�s ;J� does.
Substituting �5.5�–�5.8� into �5.2�–�5.4�, using �4.2� and �4.9� again and writing ��l�H�J�

=�aa�l�H�J�, etc., we obtain

���l�,��l���H�J� =
�a�b

l − l�
Cab

c �lc�l�H�J� − l�c�l��H�J�� , �5.9�

���l�, ̃��s��H�J� =
�a�b

1 − ls
Cab

c �lsc�l�H�J� + ̃c�s�H�J�� , �5.10�

�̃��s�, ̃��s���H�J� =
�a�b

s − s�
Cab

c �s�̃c�s�H�J� − s̃c�s��H�J�� , �5.11�

where Cab
c ’s are structure constants of the Lie algebra sp�2�n+1� ,R�. Writing �5.1a� and �5.1b� in

the explicitly � related forms as

��l�H�J� = �a�
m=0

�

lma
�m�H�J� , �5.12a�

̃��s�H�J� = �a�
k=1

�

sk̃a
�k�H�J� , �5.12b�

and then expanding both sides of �5.9�–�5.11�, we finally obtain

�a
�m�,b

�k��H�J� = Cab
c c

�m+k�H�J�, m,k = 0, ± 1, ± 2, . . . , �5.13�

where a
�−k�H�J�ª ̃a

�k�H�J� for k�1. Thus, the infinite set of symmetry transformations �a
�m� ,m

=0, ±1, ±2, . . . 	 constitute a double affine Kac-Moody sp�2�n+1̂� ,R� algebra �without center
charge�.

Now we consider transformations �4.10� and �4.11�. They can be expanded as

�H�J� = ��
m=0

�

lm��m�H�J� , �5.14a�

�̃H�J� = ��
k=1

�

sk�̃�k�H�J� . �5.14b�

Thus we obtain another infinite set of double symmetry transformations ���m� , �̃�k� ,m
=0,1 ,2 , . . . ;k=1,2 , . . . 	 of the SGM-n theory. To calculate their commutators, we first denote

�4.10� and �4.11� by ���l�H�J�, �̃��s�H�J�, respectively, and then have
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����l�,����l���H�J� = − J2�
�

�l
�����l��F�l;J�F�l;J�−1�� + J2��

�

�l�
����l�F�l�;J�F�l�;J�−1��

− J2������l��F�l;J�F�l;J�−1,Ḟ�l;J�F�l;J�−1��

+ J2������l�F�l�;J�F�l�;J�−1,Ḟ�l�;J�F�l�;J�−1�� , �5.15�

����l�,�̃��s��H�J� = − J2�
�

�l
��̃��s�F�l;J�F�l;J�−1�� − J2�s2 �

�s
����l�F̃�s;J�F̃�s;J�−1��

− J2���̃��s�F�l;J�F�l;J�−1,Ḟ�l;J�F�l;J�−1��

− J2�s2����l�F̃�s;J�F̃�s;J�−1,F̃
˙ �s;J�F̃�s;J�−1�� , �5.16�

��̃��s�,�̃���s���H�J� = J2�s2 �

�s
��̃���s��F̃�s;J�F̃�s;J�−1�� − J2��s�2 �

�s�
��̃��s�F̃�s�;J�F̃�s�;J�−1��

+ J2�s2��̃���s��F̃�s;J�F̃�s;J�−1,F̃
˙ �s;J�F̃�s;J�−1��

− J2��s�2��̃��s�F̃�s�;J�F̃�s�;J�−1,F̃
˙ �s�;J�F̃�s�;J�−1�� . �5.17�

As for ���l��F�l ;J�, ���l�F̃�s ;J�, etc., we propose

���l��F�l;J� = �
l

l − l�
�lḞ�l;J�F�l;J�−1 − l�Ḟ�l�;J�F�l�;J�−1�F�l;J� , �5.18�

�̃��s�F�l;J� = �
ls

ls − 1
lḞ�l;J�F�l;J�−1 + sF̃

˙ �s;J�F̃�s;J�−1 +
1

2
�F�l;J� , �5.19�

���l�F̃�s;J� = �
1

ls − 1
sF̃

˙ �s;J�F̃�s;J�−1 + lḞ�l;J�F�l;J�−1 +
1

2
�F̃�s;J� , �5.20�

�̃��s��F̃�s;J� = �
s�

s − s�
�sF̃

˙ �s;J�F̃�s;J�−1 − s�F̃
˙ �s�;J�F̃�s�;J�−1�F̃�s;J� . �5.21�

By some lengthy but straightforward calculations, it can be verified that �5.18� and �5.19� are
double symmetry transformations of Eq. �3.17� with conditions �3.18� and �3.19�; while �5.20� and
�5.21� are double symmetry transformations of Eq. �3.25� with conditions �3.26�.

Substituting �5.18�–�5.21� into �5.15�–�5.17� and using �4.10� and �4.11�, again, it follows that

����l�,����l���H�J� = �
�

�l
 l

l − l�
�l����l�H�J� − l�����l��H�J���

− ��
�

�l�
 l�

l� − l
�l����l��H�J� − l���l�H�J��� , �5.22�

����l�,�̃��s��H�J� = �
�

�l
 ls

ls − 1
�l���l�H�J� − s−1�̃��s�H�J���

+ �s2 �

�s
 1

ls − 1
�l���l�H�J� − s−1�̃��s�H�J��� , �5.23�

113502-12 Ya-Jun Gao J. Math. Phys. 48, 113502 �2007�

Downloaded 10 Apr 2008 to 159.226.37.98. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



��̃��s�,�̃���s���H�J� = �s2 �

�s
 s�

s − s�
�s−1�̃���s�H�J� − s�−1�̃���s��H�J���

− ��s�2 �

�s�
 s

s� − s
�s�−1�̃��s��H�J� − s−1�̃��s�H�J��� . �5.24�

By using �5.14a� and �5.14b� to expand both sides of �5.22�–�5.24�, we obtain

���m�,��k��H�J� = �m − k���m+k�H�J�, m,k = 0, ± 1, ± 2, . . . , �5.25�

where we have written ��−k�H�J�ª �̃�k�H�J� for k�1. This shows that the infinite set of double
symmetry transformations ���m� ,m=0, ±1, ±2, . . . 	 constitute a double Virasoro algebra �without
central charge�.

Next we investigate the commutators between the members of ��m�	 and ���k�	. For example,
from �4.2�, �4.10�, �5.5�, and �5.18� we have, by some calculations

����l�,a�s��H�J� = �
�

�l
 l

l − s
�la�l�H�J� − sa�s�H�J��� − �

l

l − s

�

�l
�la�l�H�J��

+ �
s

l − s

�

�s
�sa�s�H�J�� . �5.26�

Similarly, we can give out the expressions of ����l� , ̃a�s��H�J�, ��̃��l� ,a�s��H�J�, and

��̃��l� , ̃a�s��H�J�. Then by using �5.12a�, �5.12b�, �5.14a�, and �5.14b� to expand both sides of
these results, we finally obtain

���k�,a
�m��H�J� = − ma

�k+m�H�J�, k,m = 0, ± 1, ± 2, . . . . �5.27�

VI. DOUBLE-DUALITY SYMMETRY AND MULTIPLE INFINITE-DIM SYMMETRY
ALGEBRAS

Equations �5.13�, �5.25�, and �5.27� show that the symmetry transformations �4.2� and �4.9�–
�4.11� give a double representation of semidirect product of the affine sp�2n+1̂ ,R� and Virasoro
algebras. These give expression to that the infinite-dim symmetry structures of the SGM-n theories

contain not only the double Kac-Moody sp�2�n+1̂� ,R� algebras but also the double Virasoro
algebras. However, the theory under consideration has even more symmetries. To see this, we
noted that the Eqs. �3.3� and �3.1� with Gauss decomposition �3.2� imply that for each n there
exists a double-duality mapping D�J� as follows:

D�J�: M�J� � M̂�J� = � P̂�J� − P̂�J�Q̂�J�

− Q̂�J�P̂�J� Q̂�J�P̂�J�Q̂�J� + J2�2P̂�J�−1
� , �6.1a�

P̂�J� = T�P�J̊��, Q̂�J� = J̊2VP�J̊��Q�J̊�� , �6.1b�

where the transformations T, V, and overcircle operation “o” are defined by �3.5� and �2.4�,
respectively.

It can be directly verified that M̂�J� satisfies

d��−1M̂�J��*dM̂�J�� = 0, �6.2�

M̂�J�T = M̂�J� , �6.3a�
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M̂�J��M̂�J� = J2�2� , �6.3b�

which are the same in form as �3.3�, �3.1a�, and �3.1b�. Thus, similar to the above discussions, we

can obtain the corresponding Ĥ�J�, �̂�J�, Â�J�, �̃
ˆ �J�, Ã

ˆ �J�, etc., double-complex equation,

2�z + �*�dĤ�J� = �Ĥ�J� + Ĥ�J�†��dĤ�J� , �6.4�

and a pair of ED-complex HE-type linear systems,

dF̂�t;J� = �̂�t;J��F̂�t;J� , �6.5�

F̂�0;J� = I , �6.6a�

F̂
˙ �0;J� = Ĥ�J�� , �6.6b�

��t�F̂�t;J�T�F̂�t;J� = � , �6.7a�

F̂�t;J�†�Â�t;J�F̂�t;J� = � , �6.7b�

dF̃
ˆ �w;J� = �̃

ˆ �w;J��F̃
ˆ �w;J� , �6.8�

�̃�w�F̃ˆ �w;J�T�F̃
ˆ �w;J� = � , �6.9a�

F̃
ˆ �w;J�†�Ã

ˆ �w�F̃ˆ �w;J� = � . �6.9b�

It should be pointed out that M̂�J� and M�J� give the same pair of real solutions of the SGM-

n theory, but M̂�J��M�J� and we have Ĥ�J��H�J�, �̂�J����J�, �̃
ˆ �J�� �̃�J�, etc.. Thus, starting

from a single solution M�J� of Eqs. �3.3� and �3.1�, we obtain two pairs of different ED-complex

linear systems �6.5�–�6.9�, �3.17�–�3.19�, �3.25�, and �3.26�. Based on solutions F̂�J�, F̃
ˆ �J� of �6.5�

and �6.9�, we can explicitly construct another infinite set of infinitesimal symmetry transforma-
tions of the SGM-n theory as

̂Ĥ�J� = J21

l
�F̂�l;J�TF̂�l;J�−1 − T�� , �6.10a�

̃
ˆ
Ĥ�J� = − J2s�F̃ˆ �s;J�TF̃

ˆ �s;J�−1 − T�� , �6.10b�

�̂Ĥ�J� = − J2�F̂
˙ �l;J�F̂�l;J�−1� , �6.11a�

�̃
ˆ

Ĥ�J� = J2�s�sF̃
ˆ̇ �s;J�F̃ˆ �s;J�−1 + 1

2 �� , �6.11b�

which constitute another double representation of the semidirect product of affine sp�2�n+1̂� ,R�
and Virasoro algebras. Therefore, for each n, the two sets of infinite many double symmetry
transformations of the SGM-n theory constructed in this paper constitute a quadruple representa-

tion of semidirect product of the Kac-Moody sp�2�n+1̂� ,R� and Virasoro algebras. These dem-
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onstrate that the SGM-n theories under consideration possess much richer symmetry structures
than previously expected.

VII. SUMMARY AND DISCUSSIONS

By using the so-called ED-complex function method,25 the previously found doubleness
symmetry24 of the SAS SGM-n theories is further exploited and extended in the present paper. A
double-complex H-potential H�J� is introduced in �3.8� and the motion equations of the SAS
SGM-n theory are written as a double-complex form �3.10�. Moreover, we also find that the
theories under consideration have more double symmetries which make us be able to introduce an
ED-duality mapping �6.1� and establish two pairs of ED-complex HE-type linear systems
�3.17�–�3.19�, �3.25�, �3.26�, and �6.5�–�6.9� for each SGM-n theory. We would like to indicate
that although Eqs. �3.17�, �6.5�, �3.25�, and �6.8� are, in form, interrelated by t↔w=1/ t, the

analytic properties of F�t ;J� �F̂�t ;J�� and F̃�w ;J� �F̃ˆ �w ;J�� as well as the conditions �3.18� and
�3.19� ��6.6� and �6.7�� and �3.26� ��6.9�� do not have this interrelation, therefore as whole ED-
complex linear systems they are different and give rise to different symmetries of the SGM-n
theory. Based on these linear systems, we explicitly construct two sets of double symmetry trans-
formations �4.2�, �4.9�–�4.11�, �6.10�, and �6.11�. For any fixed n, these symmetries are verified to
constitute quadruple infinite-dim Lie algebras, each of which is a semidirect product of the Kac-

Moody sp�2�n+1̂� ,R� and Virasoro algebras. These results show that the ED-complex method is
necessary and more effective. Some of the results in this paper cannot be obtained by the usual
�non-ED-complex� scheme.

Finite symmetry transformations relating to the above infinitesimal ones and soliton solutions
of the studied theories need more and further investigations and will be considered in some
forthcoming works.
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