
Inverse scattering method and soliton double solution
family for the general symplectic gravity model

Ya-Jun Gaoa�

Department of Physics, Bohai University, Jinzhou 121013, Liaoning,
People’s Republic of China

�Received 26 January 2008; accepted 24 June 2008; published online 19 August 2008�

A previously established Hauser–Ernst-type extended double-complex linear sys-
tem is slightly modified and used to develop an inverse scattering method for the
stationary axisymmetric general symplectic gravity model. The reduction proce-
dures in this inverse scattering method are found to be fairly simple, which makes
the inverse scattering method applied fine and effective. As an application, a con-
crete family of soliton double solutions for the considered theory is obtained.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2957941�

I. INTRODUCTION

The dimensionally reduced low-energy �super�string effective theories describe various inter-
acting matter fields coupled to gravity and are very significant in theoretical and mathematical
physics; the Einstein–Maxwell-dilaton-axion �EMDA� theory �e.g., Refs. 1–5� and its generalized
cases containing multiple vector fields6 are typical and important models of this kind, in which the
EMDA theory with six vector fields describes the N=4, D=4 supergravity.6

On the other hand, a series of mathematically possible generalizations of the EMDA theory
was suggested by Kechkin and Yurova.7 These generalized theories, which are different from the
EMDA theory with multiple vector fields, describe a coupled system of n Abelian vector fields and
the symmetric n�n matrix extensions of the dilaton and Kalb–Ramond fields for n=1,2 , . . . and
are called symplectic gravity models �SGMs� by Kechkin and Yurova.7 We abbreviate these SGMs
to SGM-n theories in this paper. Thus the EMDA theory is the case of SGM-1. Some analogies
between the SGM-n theories and the reduced vacuum Einstein theory have been noted. However,
the mathematical structures of the SGM-n theories are much more complicated and many methods
for studying the reduced vacuum gravity �e.g., Refs. 8–12� are no longer applicable. Thus, deeper
research and further extended studying methods are needed.

It is undoubted that exact solutions are particularly valuable for understanding the related
theories. In the case of general relativity, Belinsky and Zakharov �BZ� �Ref. 8� developed an
inverse scattering method �ISM� for solving the two-dimensional vacuum gravity field equations.
For the reduced Einstein–Maxwell theory, some ISMs were also proposed.13 Recently, the BZ ISM
has been used to generate �soliton� solutions for some specially restricted systems of the reduced
low-energy string effective theories.14,15 In Ref. 16, by using a modified BZ ISM, from the trivial
seed solution and constant “wave function,” the author gave some special soliton solutions for the
five-dimensional dilaton-axion gravity theory and EMDA theory. In Ref. 17, monodromy trans-
forms and integrability structures for some reduced Einstein field equations and low-energy effec-
tive string theories were studied by using some associated linear systems. These results also give
some enlightenment for constructing more soliton solutions of the related theories. However, more
general application of these schemes to the SGM-n theories still remains a problem. The difficul-
ties have to do with the complicated mathematical structures, such as the fundamental field
matrices in the SGM-n theories in general have dimensions greater than 2 and, at the same time,
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must satisfy some nontrivial Riemannian symmetric space �or coset� conditions, etc. �The funda-
mental field matrix of the SGM-n theory considered in this paper belongs to the symmetric space
Sp�2�n+1� ,R� /U�n+1�.7� Therefore, it would be worthwhile to develop some more effective ISM
and obtain new exact �soliton� solutions of the SGM-n theories.

In the present paper, we develop an ISM for the stationary axisymmetric �SAS� SGM-n theory
to each fixed n. This ISM is different from the above mentioned BZ-like ones, and for arbitrary
seed solution and general “wave function” F�w ;J� �see below�, we can obtain the soliton double
solution family of the considered theory. In Ref. 18, two pairs of Hauser–Ernst �HE�–type ex-
tended double �ED�–complex linear systems were established for constructing infinitesimal18 and
finite19 symmetry transformations of the SGM-n theory. Here we show that, with some minor
modifications, one of these linear systems is also suitable to the development of ISM for explicitly
constructing soliton solutions of the SGM-n theory. These demonstrate that the applicable range of
the HE-type linear system is larger than previously expected. As well known, for an ISM the
so-called reduction problem is very important and in general is very complicated; so far there is no
generally applicable method. However, in this paper we unexpectedly find that, based on the
modified HE-type ED-complex linear system, the reduction procedure for the ISM given here is
fairly simple.

In Sec. II, some related concepts and notations of the ED-complex function20 and double
motion equations for the SGM-n theories18 are briefly recalled. In Sec. III, a modified HE-type
ED-complex linear system for the SGM-n theory is established. In Sec. IV, an ED dressing
transformation is introduced and the associated theorem is proven. In Sec. V, a double ISM for the
SGM-n theory is presented. As an application, a family of soliton double solutions for the SGM-n
theory is explicitly constructed in Sec. VI. Finally, Sec. VII gives some summary and discussions.

II. ED-COMPLEX FUNCTION AND DOUBLE MOTION EQUATIONS
FOR SGM-n THEORIES

For later use, here we briefly recall some related concepts and notations of the ED-complex
function20 and double motion equations for the SGM-n theories.18

A. ED-complex function

Let i and J denote, respectively, the ordinary and the ED imaginary unit, i.e., J= j�j2=−1, j
� � i� or J=���2= +1, �� �1�.20 If a series �n=0

� �an� , an�C �ordinary complex number� is
convergent, then a�J�=�n=0

� an J2n is called an ED ordinary complex number, which corresponds to
a pair �aC ,aH� of ordinary complex number, where aCªa�J= j� and aHªa�J=��. When a�J� and
b�J� both are ED ordinary complex numbers, c�J�=a�J�+Jb�J� is called an ED-complex number,
it corresponds to a pair �cC ,cH�, where cCªc�J= j�=aC+ jbC and cHªc�J=��=aH+�bH. We
denote a�J�ªReED�c�J�� and b�J�ª ImED�c�J��. If a�J� and b�J� are both real, we call them
double real and call the corresponding c�J� simply a double-complex number.21

All ED-complex numbers with usual addition and multiplication constitute a commutative
ring. Corresponding to the two imaginary units J and i in this ring, we have two complex conju-
gations: ED-complex conjugation “�” and ordinary complex conjugation “−,”

c�J��
ª a�J� − Jb�J�, c�J� ª a�J� + Jb�J� . �2.1�

These imply that J�=−J, J̄=J, i�= i, and ī=−i. If a�J� and b�J� are ED ordinary complex functions
of some ordinary complex variables z1 , . . . ,zn, then c�z1 , . . . ,zn ;J�=a�z1 , . . . ,zn ;J�
+Jb�z1 , . . . ,zn ;J� is called an ED-complex function. We say c�z1 , . . . ,zn ;J� to be continuous,
analytical, etc., if a�z1 , . . . ,zn ;J� and b�z1 , . . . ,zn ;J� both, as ordinary complex functions, have the
same properties. For an ED-complex matrix W�J�, we define

W�J�+
ª �W�J����, �2.2�

where “�’’ denotes the transposition.
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B. Double motion equations of the SGM-n theories

The actions of SGM-n theories in four dimensions are7

S =� �− R + Tr	1

2
��pp−1�2 − pFF� +

1

3
�pH�2
��− gd4x , �2.3�

where g�� is the metric �signature +– ––, � ,�=0,1 ,2 ,3�, R is the Ricci scalar, g=det�g���, p is
a symmetric n�n matrix with scalar field components �for the EMDA case, p=e−2�, where � is
the dilaton field�, and

F�� = ��A� − ��A�, H��� = ��B�� − 1
2 �A�F��

� + F��A�
�� + cyclic. �2.4�

A� is an n�1 column of Abelian vector fields and B�� is an extension of the usual Kalb–Ramond
tensor field; here each Lorentz component of B�� is a symmetric n�n matrix and among these
matrices there are relations B��=−B��. The SGM-n action �2.3� gives the pure Einstein and the
EMDA theory, respectively, when n=0 and n=1, and provides their mathematical generalization
for an arbitrary non-negative integer n	1.

In the SAS case, the four-dimensional space-time line element can be written as22

ds2 = fABdxAdxB − e
�LNdxLdxN �A,B = 0,1,L,N = 2,3� , �2.5�

and fAB can be parametrized as

fAB = 
 f − f�

− f� f�2 − 
2f−1 � . �2.6�

The set of nontrivial SGM-n dynamical quantities also contains two Lorentzian components A0, A1

of the n�1 column four-potential A�, one nontrivial Lorentzian component B01 of the matrix
extended field B�� and the n�n matrix field p; all of these fields are assumed to depend only on
x2, x3. Introducing �n+1�� �n+1� symmetric real matrices P and Q by

P = 
 f − 2A0
�pA0 − �2A0

�p

− �2pA0 − p
� ,

Q = 
 � − �2�A1 + �A0��

− �2�A1 + �A0� �A1 + �A0�A0
� + A0�A1 + �A0�� − B01

� . �2.7�

then the essential dynamical equations of the SAS SGM-n theory can be written as7

d�
−1P�dQP� = 0, d�
�dPP−1 + 
−1P�dQPQ� = 0, �2.8�

and 
=
�x2 ,x3�	0 is a harmonic function in two dimensions �x2 ,x3�, where the notations of
differential form are adopted, and “�” is the dual operation of two-dimensional Euclidian space.

As pointed out in Refs. 18 and 23, the SAS SGM-n theories possess the so-called doubleness
symmetry such that for any non-negative n, we can introduce �n+1�� �n+1� double-real sym-
metric matrices P�J� and Q�J� and define a double-real 2�n+1��2�n+1� matrix function M�J�
=M�x2 ,x3 ;J� as

M�J� = 
 P�J� − P�J�Q�J�
− Q�J�P�J� Q�J�P�J�Q�J� + J2
2P�J�−1 � , �2.9�

and the motion equations �Eq. �2.8�� can be extended to a double formulation

d�
−1M�J���dM�J�� = 0, �2.10�

with conditions
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M�J�� = M�J� , �2.11a�

M�J��M�J� = J2
2� , �2.11b�

� ª 
 0 In+1

− In+1 0
� , �2.11c�

where In+1 is the n+1-dimensional unit matrix. If a solution of Eqs. �2.10�, �2.11a�, �2.11b�, and
�2.11c� is known, then by the decomposition �2.9�, we can obtain real solutions of the SGM-n
theory in pairs as follows:

�P,Q� = �PC,QC� , �2.12a�

�P̂,Q̂� = �T�PH�,VPH
�QH�� , �2.12b�

where the transformations T, V are defined by

T: P → T�P� = 
P−1,

V: P,Q → VP�Q� =� 
−1P��x3Q�Pdx2 − 
−1P��x2Q�Pdx3, �2.13�

and the existence of VPH
�QH� is ensured by the J=� case of Eq. �2.10�.

III. MODIFIED HE-TYPE ED-COMPLEX LINEAR SYSTEM

Equation �2.10� implies that we can introduce a double-real 2�n+1��2�n+1� matrix twist
potential K�x2 ,x3 ;J� by dK�J�=−
−1M�J���dM�J�, then from �2.11a�, �2.11b�, and �2.11c� and
harmony of 
�x2 ,x3� we can obtain K�J�−K�J��=−2J2z� with the real field z=z�x2 ,x3� introduced
by �d
=dz. Thus, if we define a double-complex H-potential

H�J� ª M�J� + JK�J� �3.1�

and denote �ªJ�, then the equations about K�J� and M�J� can be written together as

2�z + 
��dH�J� = �H�J� + H�J�+��dH�J� . �3.2�

Now we introduce an ordinary complex parameter w and define

A�w;J� ª w − �H�J� + H�J�+�� , �3.3�

��w;J� ª �−1�w�dH�J� , �3.4�

��w� ª w − 2�z + 
��, �−1�w� = ��w�−2�w − 2�z − 
��� , �3.5�

��w� ª ��w − 2z�2 + �2
�2�1/2, ���w��w=� = w . �3.6�

Then from Eqs. �3.2�–�3.4�, we can obtain

d��w;J� = ��w;J�� ∧ ��w;J� , �3.7�

where “∧” denotes the exterior product of differential forms. Equation �3.7� is just the complete
integrability condition of the following ED-complex linear differential equation
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dF�w;J� = ��w;J��F�w;J� , �3.8�

where F�w ;J�=F�x2 ,x3 ,w ;J� is a 2�n+1��2�n+1� matrix ED-complex function of x2, x3, and w.
Moreover, from the definitions and properties of 
 and z, without loss of generality, we shall
redefine coordinates by setting x2=
, x3=z for simplicity in the following.

Equation �3.8� does not define F�w ;J� uniquely; we shall impose some subsidiary conditions
being consistent with the above equations and the requirement that F�w ;J� be holomorphic in a
neighborhood of w=�. To this end, we note that if F�w ;J� is expanded in power of w−1 around
w=� as

F�w;J� = F�0��
,z;J� + w−1F�1��
,z;J� + ¯ , �3.9�

then from �3.2�, �3.8�, and the relation 2�−1�w�dz=−��w�−1d��w�, we have

dF�0��J� = 0, d�F�1��J� − H�J��F�0��J�� = 0,

d���w�F�w;J���F�w;J�� = 0, d�F�w;J�+�A�w;J�F�w;J�� = 0,

where the ED-Hermitian conjugation “+” is defined by �2.2�. These equations and �3.8� determine
F�w ;J� up to right multiplication by an arbitrary nondegenerate 2�n+1��2�n+1� matrix function
of w, so we can use this freedom and choose the integral constants consistently such that

F�0��J� = I , �3.10a�

F�1��J� = H�J�� , �3.10b�

��w�F�w;J���F�w;J� = w� , �3.11a�

F�w;J�+�A�w;J�F�w;J� = w� , �3.11b�

where I is the 2�n+1�-dimensional unit matrix. Equations �3.8�, �3.9�, �3.10a�, �3.10b�, �3.11a�,
and �3.11b� are essentially the HE-type ED-complex linear system for F�t ;J� in Ref. 18 with t
being replaced by w−1. Besides, from definition �3.3� we see that

A�w;J� is a linear function of w . �3.12�

We call �3.8�, �3.9�, �3.10a�, �3.10b�, �3.11a�, �3.11b�, and �3.12� a modified HE-type ED-complex
linear system for the SGM-n theory.

Now we give some other useful relations. Introducing ordinary complex coordinates �ªz
+ i
, �ªz− i
, Eq. �3.2� can be rewritten as

�2� − �H�J� + H�J�+�����H�J� = 0, �3.13a�

�2� − �H�J� + H�J�+�����H�J� = 0. �3.13b�

From the definition of A�w ;J� in �3.3�, Eqs. �3.13a� and �3.13b� may be written as

A�w = 2�;J���H�J� = 0, �3.14a�

A�w = 2�;J���H�J� = 0. �3.14b�

Moreover, for any A�w ;J� satisfying Eqs. �3.11a� and �3.11b�, we have

A�w;J���A�w;J� = �2�w�� . �3.15�

083506-5 Inverse scattering method for SGMs J. Math. Phys. 49, 083506 �2008�

Downloaded 16 Dec 2008 to 159.226.37.98. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



IV. ED DRESSING TRANSFORMATION

As can be seen in the following, by virtue of the solution F�w ;J� of linear systems �3.8�, �3.9�,
�3.10a�, �3.10b�, �3.11a�, �3.11b�, and �3.12�, we can explicitly construct new double solutions of
the SGM-n theory. At first, from definitions �3.1� and �3.3�–�3.6�, we may consistently choose the
ED-complex matrix functions F�w ;J� as

F�w;J� = F�w̄;J� �4.1�

in order to ensure the reality of the new solutions. We shall take this choice in the following.
Assuming that we have a solution M0�J� �seed solution� of Eqs. �2.10�, �2.11a�, �2.11b�, and

�2.11c�, then we can obtain the corresponding H0�J�, A0�w ;J�, and solution F0�w ;J� of �3.8�, �3.9�,
�3.10a�, �3.10b�, �3.11a�, and �3.11b�. Now we take a dressing transformation

F�w;J� = ��w;J�F0�w;J� , �4.2�

where ��w ;J�=��
 ,z ,w ;J� is a 2�n+1��2�n+1� matrix ED-complex function of 
, z, and w.
Condition �4.1� and the requirement that F�w ;J� be also a solution of �3.8�, �3.9�, �3.10a�, �3.10b�,
�3.11a�, and �3.11b� �for some H�J� and the associated A�w ;J�� imply

��w;J� = ��w̄;J� , �4.3a�

���;J� = I , �4.3b�

d��w;J� = �−1�w��dH�J����w;J� − ��w;J�dH0�J��� , �4.4�

���w;J����w;J� = � , �4.5a�

�+�w;J��A�w;J���w;J� = �A0�w;J� . �4.5b�

Noticing �4.3a� and �4.3b� and expressing the expansion of ��w ;J� in the neighborhood of w
=� as

��w;J� = I + w−1��1��
,z;J� + ¯ , �4.6�

then we have the following.
Theorem 1: If H0�J� is an H-potential for some known M0�J� and ��w ;J� satisfies Eqs. �4.3a�,

�4.3b�, �4.4�, �4.5a�, and �4.5b� with A�w ;J� fulfilling �3.12�, then

H�J� ª H0�J� − J2��1��J�� �4.7�

is a double-complex H-potential of the SAS SGM-n theory, i.e., M�J�=ReED�H�J�� is a solution of
Eq. �2.10� with conditions �2.11a� and �2.11b�.

Proof: First, from �4.3a� and �4.6�, H�J� in �4.7� is double complex �cf. Sec. II A for the
meaning of “double complex”�. Moreover, Eqs. �4.5b�, �4.6�, and �3.12� give

A�w;J� = w − �H�J� + H�J�+�� , �4.8�

with H�J� defined by �4.7�. In terms of coordinates � and �, Eq. �4.4� can be written as

��H�J�� = ��w;J���H0�J���−1�w;J� − �w − 2������w;J��−1�w;J� ,

��H�J�� = ��w;J���H0�J���−1�w;J� − �w − 2������w;J��−1�w;J� .

Thus, if ��w ;J� and �−1�w ;J� are not singular at w=2� and w=2� �for the soliton transformation
in the following, these conditions are automatically fulfilled�, the above two equations give
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��H�J�� = ��w = 2�;J���H0�J���−1�w = 2�;J� , �4.9a�

��H�J�� = ��w = 2�;J���H0�J���−1�w = 2�;J� . �4.9b�

Since H0�J� and A0�w ;J� satisfy Eqs. �3.14a� and �3.14b�, from Eqs. �4.5b�, �3.14a�, and �3.14b�
�for H0�J�, A0�w ;J�� we have

A�w = 2�;J���H�J� = 0, �4.10a�

A�w = 2�;J���H�J� = 0. �4.10b�

These say that H�J� given by �4.7� satisfies Eq. �3.2�.
Now, Eqs. �4.4� and �4.5a� give out

dH�J� = ��w;J�dH0�J����w;J� − J2��w�d��w;J�����w;J� . �4.11�

Since for a known M0�J� we have H0�J�−H0�J��=−2J2z� by definitions of H0�J� and z, Eq.
�4.11� gives

dH�J� − dH�J�� = − 2J2dz��w;J�����w;J� − J2��w�d���w;J�����w;J�� .

Thus using Eq. �4.5a� again we obtain

H�J� − H�J�� = − 2J2z� �4.12�

by choosing some suitable integral constant. Equation �4.12� immediately implies that M�J�
ªReED�H�J�� satisfies �2.11a�. Moreover, by �3.11a�, �3.11b�, �4.2�, �4.5a�, and �4.5b� �for
F0�w ;J� and A0�w ;J��, it follows that A�w ;J� satisfies Eq. �3.15�, then from Eqs. �4.8� and �4.12�
we can see that M�J�ªReED�H�J�� satisfies condition �2.11b�. Finally, with conditions �2.11a� and
�2.11b�, Eq. �3.2� implies Eq. �2.10�.

V. DOUBLE ISM

For an ISM of solving some nonlinear equations, the so-called reduction problem is very
important. However, the reduction procedures vary with the equations and the associated linear
systems and, in general, are very difficult; so far there is no generally applicable method. In this
section, based on the modified HE-type ED-complex linear system and ED dressing transforma-
tion given above, we develop a double ISM for the SGM-n theory and unexpectedly find that the
reduction procedures for this ISM are fairly simple.

To construct pure N-soliton solutions of the SAS SGM-n theory, we take the following ansatz
for ��w ;J� and �−1�w ;J�:

��w;J� = I + �
k=1

N
Rk�J�

w − �k
, �5.1a�

�−1�w;J� = I + �
k=1

N
Sk�J�

w − �k
, �5.1b�

where �owing to �4.3a�� the poles �k, �k are real, Rk�J�=Rk�
 ,z ;J�, Sk�J�=Sk�
 ,z ;J� are double-
complex 2�n+1��2�n+1� matrix functions, and they are all independent of w. The relations
��w ;J��−1�w ;J�=�−1�w ;J���w ;J�= I imply
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Rk�J��−1��k;J� = �−1��k;J�Rk�J� = 0, Sk�J����k;J� = ���k;J�Sk�J� = 0. �5.2�

Thus Rk�J� and Sk�J� are singular matrices. In the following, we take Rk�J� and Sk�J� to be of rank
11 and write them as

Rk�J� = mk�J�nk�J�, Sk�J� = pk�J�qk�J�, k = 1, . . . ,N �no sum in k� , �5.3�

where mk�J�=mk�
 ,z ;J� and pk�J�= pk�
 ,z ;J� are 2�n+1�-dimensional column vectors, and
nk�J�=nk�
 ,z ;J� and qk�J�=qk�
 ,z ;J� are 2�n+1�-dimensional row vectors. By �5.1a�, �5.1b�, and
�5.3�, Eq. �5.2� gives

nk�J� + �
l=1

N
nk�J�pl�J�

�k − �l
ql�J� = 0, pk�J� − �

l=1

N
nl�J�pk�J�

�l − �k
ml�J� = 0, �5.4�

where nk�J�pl�J� is a scalar product of row vector nk�J� and column vector pl�J�. Equation �5.4�
enables us to express all of the vector functions mk�J�’s and qk�J�’s in terms of the set of 2N vector
functions nk�J�’s and pk�J�’s,

mk�J� = �
l=1

N

Glk
−1�J�pl�J�, qk�J� = − �

l=1

N

Gkl
−1�J�nl�J� , �5.5�

where Gkl
−1�J�’s are elements of the inverse of matrix G�J�= �Glk�J��l,k=1

N with

Glk�J� ª
nl�J�pk�J�

�l − �k
. �5.6�

Therefore, we only need to determine nk�J�,pk�J� and �k,�k in the following.
The functions Rk�J�, Sk�J�, �k, and �k must also obey Eqs. �4.4�, �4.5a�, and �4.5b�. Writing

Eq. �4.4� as

�−1�w�dH�J�� = ���w;J��0�w;J�� + d��w;J���−1�w;J� = ��w;J���0�w;J���−1�w;J�

− d�−1�w;J�� , �5.7�

with �0�w ;J�=�−1�w�dH0�J�, then the substitution of Eqs. �5.1a�, �5.1b�, and �5.3� into �5.7�
shows that �k,�k should all be real constants and nk�J�,pk�J� satisfy the equations

dnk�J� + nk�J��0��k;J�� = 0, dpk�J� − �0��k;J��pk�J� = 0. �5.8�

Comparing Eq. �5.8� with �3.8� �for seed solution H0�J��, we see that the solutions of Eq. �5.8� can
be written as

nk�J� = nk
�0��J�F0

−1��k;J�, pk�J� = F0��k;J�pk
�0��J� , �5.9�

where nk
�0��J� and pk

�0��J� are 2�n+1�-dimensional double-complex constant row and column vec-
tors, respectively. Further, when substituting Eqs. �5.1a�, �5.1b�, �5.3�, �5.5�, and �5.9� into �4.5a�
and �4.5b�, noticing �3.12� and by some algebraic calculations, we surprisingly find that conditions
�4.5a� and �4.5b� can be simultaneously fulfilled provided that we take

�k = �k, �5.10a�

nk
�0��J� = pk

�0��J��� , �5.10b�

with pk
�0��J�’s being double real and � being defined by Eq. �2.11c�.

1This is not the only possible choice. In general, the rank r of Rk�J� can be taken as 1�r�2n+1, and similarly for Sk.

083506-8 Ya-Jun Gao J. Math. Phys. 49, 083506 �2008�

Downloaded 16 Dec 2008 to 159.226.37.98. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



It must be also noted that from �5.9�, �5.10a�, and �5.10b� and the relation pk
�0��J���pk

�0��J�
=0 for any 2�n+1�-dimensional column vector pk

�0��J�, the expressions of Gkk�J� �k=1,2 , . . . ,N� in
�5.6� are indefinite and need to be further determined. From the function theory of complex
variable, we can have

Gkk�J� = − pk
�0��J���F0

−1��k;J���wF0�w;J��w=�k
pk

�0��J�, k = 1,2, . . . ,N . �5.11�

So far, we have obtained ��w ;J� in terms of F0�w ;J�; from Theorem 1 and noticing relation
�3.11a� for F0�w ;J�, we can get the new N-soliton double-complex H-potential HN�J� by formula
�4.7� with

�N
�1��J� = �

l,k=1

N
���k�

�k
Glk

−1�J�F0��l;J�pl
�0��J�pk

�0��J��F0
���k;J�� , �5.12�

where

Glk�J� =
���l�

�l��l − �k�
pl

�0��J��F0
���l;J��F0��k;J�pk

�0��J�, k � l, k, l = 1, . . . ,N ,

Gkk�J� = −
���k�

�k
pk

�0��J��F0
���k;J����wF0�w;J��w=�k

pk
�0��J�, k = 1, . . . ,N , �5.13�

and pk
�0��J�’s are arbitrary 2�n+1�-dimensional double-real constant column vectors.

VI. APPLICATION: SOLITON DOUBLE SOLUTION FAMILY OF SGM-n THEORY

To illustrate the ISM given above, now we concretely construct a family of soliton solutions
for the SGM-n theory, to which we choose double Minkowsky space-time as a seed solution. The
corresponding M0�
 ,z ;J�, H0�
 ,z ;J�, and F0�
 ,z ,w ;J� are

M0�J� = 
 Ĩn+1 0

0 J2
2Ĩn+1

�, H0�J� = 
 Ĩn+1 − 2J3zIn+1

0 J2
2Ĩn+1

� ; Ĩn+1 ª 
1 0

0 − In
� , �6.1�

F0�
,z,w;J� =
1

��w�� wIn+1 JĨn+1

J3w

2
�w − 2z − ��w��Ĩn+1

1

2
��w − 2z + ��w��In+1 � � . �6.2�

Now for simplifying the notations, we write

pk
�0��J� = 
ak�J�

bk�J�
� �ak�J�, bk�J��

are both arbitrary double-real constant �n+1�-dimensional column vectors and introduce

�k = �k�
,z� ª ���k�, T���k ª �k − 2z � �k, ãk ª Ĩn+1ak, b̃k ª Ĩn+1bk.

Then from Eqs. �4.7�, �5.12�, �5.13�, and �6.2�, we can obtain the corresponding soliton double-
complex H-potential family as follows:

HN�
,z;J� = H0�J� + J3 �
l,k=1

N

G̃lk
−1�J�ul�J�uk

��J�, N = 1,2, . . . , �6.3�

where
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G̃lk�J� =
1

�l − �k
ul

��J��uk�J�, k � l, k,l = 1, . . . ,N ,

G̃kk�J� = −
1

�k
2uk

��J��vk�J�, k = 1, . . . ,N , �6.4�

and

uk�J� = � �kak�J� + Jb̃k�J�

�k

2
J3T�−�kãk�J� +

T�+�k

2
bk�J� � ,

vk�J� = ���2
�2 − 2z��k − 2z��ak�J� + �2z − �k�Jb̃k�J�
J3

2
�T�−�k�k

2 + 4�k

2�ãk�J� + 2
2bk�J� � . �6.5�

Thus, we obtain a concrete soliton double solution family �MN�J�=ReED�H�J�� , N=1,2 , . . .�. By
using formulas �2.12a� and �2.12b�, for each MN�J� we can obtain a pair of real solutions of the
SGM-n theory.

VII. SUMMARY AND DISCUSSIONS

A previously established HE-type ED-complex linear system18 is slightly modified and used to
develop a double ISM for the SGM-n theory. We show that the reduction procedures for this ISM
are fairly simple, which makes the ISM applied fine and effective. As an application, we obtain a
concrete family of soliton double solutions for the SAS SGM-n theory. The discussions in this
paper are applicable to some nonlinear �-models on other symmetric spaces.
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