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Some Riemann-Hilbert (RH) problems are introduced for carrying out symmetry transformations of the
2-dimensional heterotic string theory. A pair of RH transformations are constructed, and they are verified
to give an infinite-dimensional symmetry group of the considered theory. This symmetry group has the
structure of the semidirect product of the Kac-Moody group O�d; d� n�b and Virasoro group. Moreover,
the infinitesimal forms of these RH transformations are calculated out, and they are found to give exactly
the same results as in my previous paper. These demonstrate that the pair of RH transformations in the
current paper provide exponentiations of all the infinitesimal symmetries in my previous paper. The finite
forms of symmetry transformations given in the present paper are more important and useful for theoretic
studies and new solution generation, etc.
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I. INTRODUCTION

The studies of symmetry structures for the dimension-
ally reduced low energy effective (super)string theories
have attracted much attention in the recent past (e.g. [1–
22]) owing to their importance in theoretical and mathe-
matical physics. Such effective string theories describe
various interacting matter fields coupled to gravity. The
dimensionally reduced heterotic string theory (e.g.
[1,2,9,14–16,18,20–22]) is a typical and very important
model of this kind. Some analogies between it and the
reduced Einstein-Maxwell theory have been noted.
However, the mathematical structures of the heterotic
string theory are much more complicated. For example,
many scalar functions in Einstein gravity correspond, for-
mally, to matrix ones in the string theory; thus the non-
commuting property of the matrices gives rise to essential
complications for the further study of the latter. Moreover,
some important and useful formulas in some studies of the
reduced Einstein or Einstein-Maxwell theories (e.g. [23–
29]) will have no general analogues in the reduced heter-
otic string theory, so deeper research and further, extended
methods of study are needed.

The present paper is a continuation of my previous paper
[22]. In [22], I constructed complex �2d� n� � �2d� n�
matrix H, F potentials and established a pair of Hauser-
Ernst (HE)-type linear systems. Based on these linear
systems, I explicitly constructed new infinitesimal symme-
try transformations of the 2-dimensional heterotic string
theory and verified that they constitute an infinite-
dimensional Lie algebra, which has the structure of the

semidirect product of the Kac-Moody O�d; d� n�b and
Virasoro algebras. However, for theoretic studies and
new solution generation, etc., the more important and
useful thing is to find finite symmetry transformations of

the considered theory. This is the main aim of the present
paper.

In Sec. II, the �2d� n� � �2d� n�matrix complex F,H
potentials and associated pair of HE-type linear systems
for the 2-dimensional heterotic string theory [22] are
briefly recalled. In Sec. III, I construct a pair of
Riemann-Hilbert (RH) transformations relating to the
pair of HE-type linear systems and then prove that they
are indeed symmetry transformations of the considered
heterotic string theory. In Sec. IV, the equivalent integral
equation formulations are given out, and the infinite-
dimensional group structures of the RH transformations
are verified. In Sec. V, infinitesimal forms of the given RH
transformations are calculated, which give exactly the
same results of my previous paper [22]. These demonstrate
that the pair of RH transformations in the present paper
provide exponentiations of all the infinitesimal symmetry
transformations given in [22]. Finally, Sec. VI provides a
summary and discussion.

II. MATRIX COMPLEX F, H POTENTIALS AND
HE-TYPE LINEAR SYSTEMS

For later use, here I briefly recall the complex matrix H,
F potentials and HE-type linear systems for the 2-
dimensional heterotic string theory given in [22].

I start with the action describing the massless sector of
heterotic string theory as follows:

 S �
Z
d2�dx

�������
jGj

q
e��

�
R� GLN@L�@N�

� 1
12H LNPH

LNP � 1
4F

k
LNF

kLN
�
; (2.1)

where R is the Ricci scalar for the metric GLN (L, N �
1; 2; � � � ; 2� d), � is the dilaton field, and*yajgao@bhu.edu.cn
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N � @NA
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H LNP �

�
@LBNP �

1
2A

k
LF

k
NP

�
� cyclic:

(2.2)

BNP and Ak
L (k � 1; 2; � � � ; n) denote the antisymmetric

tensor field and U�1�n gauge fields, respectively. For the
heterotic string d � 8, n � 16, but I keep them arbitrary in
the present discussion.

Following Maharana and Schwarz [1] and Sen [2], when
dimensionally reducing the above theory from 2� d to 2
dimensions by compactification on a d-dimensional torus
and using the fact that the 2-dimensional antisymmetry
tensor field and 2-dimensional gauge fields have no dy-

namics, then (2.1) can be reduced to the following effective
action [2,9,18]:

 S �
Z
d2x

���
g
p
e��

�
R� g��@��@��

� 1
8g
�� Tr�@�M

�1@�M�
�
; (2.3)

where g�� (�, � � 1, 2) denotes the inverse of the 2-
dimensional metric g�� (in this paper I choose the signa-
ture of g�� to be�� ), g � det�g���, R is the Ricci scalar
for g��, � is the shifted dilaton field, and the �2d� n� �
�2d� n� matrix M, representing the moduli G, B, and A,
is parametrized as

 M �
G�1 G�1�B� C� G�1A

��B� C�G�1 �G� B� C�G�1�G� B� C� �G� B� C�G�1A
A>G�1 A>G�1�G� B� C� In � A>G�1A

0B@
1CA; (2.4)

in which G, B, and A are, respectively, d� d symmetric,
antisymmetric, and d� n matrix-valued fields coming
from the fields of the �2� d�-dimensional heterotic strings,
‘‘>’’ denotes the transposition, C � 1

2AA
> is a d� d

matrix, and In denotes the n� n unit matrix. All of the
above fields are assumed to depend only on x1, x2. For the
present paper I shall equivalently useM :� e��M instead
of M. In the conformal gauge g�� � e2����, denoting x1,
x2 by x, y and e�� by � for simplicity, the motion equa-
tions of the 2-dimensional heterotic string theory can be
written as [2,9,18,22]

 d���1ML�dM� � 0 (2.5)

with conditions
 

M> � M; (2.6a)

MLM � �2L; (2.6b)

L :�

0 Id 0

Id 0 0

0 0 In

0
BB@

1
CCA; (2.6c)

and � � e�� is a harmonic function in 2-dimensional
fx; yg.

Equation (2.5) implies that we can introduce a �2d�
n� � �2d� n� matrix twist potential Q�x; y� by dQ �
���1ML�dM, and then from (2.6) and the harmony of
��x; y� we can obtain Q�Q> � �2zL with the real field
z � z�x; y� introduced by �d� � dz. Thus, if we define a
complex matrix H potential

 H :� M� iQ (2.7)

and denoting � :� iL, then the equations about Q and M
can be written together as

 2�z� ���dH � �H �H>��dH: (2.8)

By introducing a complex parameter t and defining

 A�t� :� I � t�H �H>��;

�I is the �2d� n�- dim unit matrix�;
(2.9)

 ��t� :� t��t��1dH; (2.10)

 

��t� :� 1� 2t�z� ���;

��t��1 � ��t��2	1� 2t�z� ���
; (2.11)

 ��t� :� 	�1� 2zt�2 � �2�t�2
1=2; (2.12)

then Eq. (2.8) can be rewritten as

 tdH � A�t���t�; (2.13)

and the associated HE-type linear system can be estab-
lished as

 dF�t� � ��t��F�t�; (2.14)

 

F�0� � I; (2.15a)
_F�0� � H�; (2.15b)

 

��t�F�t���F�t� � �; (2.16a)

F�t�>�A�t�F�t� � �: (2.16b)

Where F�t� � F�x; y; t� is a �2d� n� � �2d� n� matrix
complex function of x, y, and t, and is holomorphic in a
neighborhood of t � 0, _F�t� :� @F�t�=@t, F�t�� :� F��t�y,
‘‘†’’ denotes the Hermitian conjugation, and �t is the com-
plex conjugation of t. The F potential F�t� is essentially a
generating function for the hierarchies of potentials given
in Ref. [9].
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Besides, by introducing another complex parameter w
and defining

 

~A�w� :� w� �H �H>��; (2.17)

 

~��w� :� ~��w��1dH; (2.18)

 

~��w� :� w� 2�z� ���;

~��w��1 � ~��w��2	w� 2�z� ���
;
(2.19)

 

~��w� :� 	�w� 2z�2 � �2��2
1=2; (2.20)

then Eq. (2.8) can be rewritten as

 dH � ~A�w�~��w�; (2.21)

and the associated HE-type linear system is

 d ~F�w� � ~��w�� ~F�w�; (2.22)

 

~��w� ~F�w��� ~F�w� � �; (2.23a)

~F�w�>� ~A�w� ~F�w� � �; (2.23b)

where ~F�w� � ~F�x; y; w� is another �2d� n� � �2d� n�
matrix complex function of x, y, and w and is analytic
around w � 0.

III. RIEMANN-HILBERT TRANSFORMATIONS

Let L denote a smooth contour surrounding the origin in
the complex plane and be symmetric with respect to the
real axis, and L� and L� be the inside and outside (in-
cluding1) of L, respectively. For a complex variable s, if a
given complex matrix function K�s� is holomorphic and
invertible on L, then there exist a pair of complex matrix
functions X��s� which are (respectively for �) holomor-
phic in L�, continuous and invertible on L [ L�, such that

 X��s� � X��s�K�s�; s 2 L: (3.1)

We call (3.1) an RH problem. For a fixed kernel K�s�, the
fundamental solution X��s� of the RH problem is unique
up to a nonsingular constant matrix factor. A suitable
boundary condition can cancel this indefiniteness.

By using the above RH problem formulation and solu-
tions F�t�, ~F�w� of linear systems (2.14), (2.15), (2.16),
(2.22), and (2.23), we can construct symmetry transforma-
tions for the reduced heterotic string theory under consid-
eration. From definitions (2.7), (2.9), (2.10), (2.11), (2.12),
(2.17), (2.18), (2.19), and (2.20), we may consistently
choose the complex matrix functions F�t� and ~F�w� as

 F�t� � F��t�; ~F�w� � ~F� �w� (3.2)

in order to ensure the reality ofM andQ in the transformed
H. We shall take this choice in the following.

A. RH transformation for linear system (2.14), (2.15),
and (2.16)

Following the spirit of [28], I introduce a scalar function
v�t� which is independent of x, y and holomorphic on L [
L� except infinity where it tends to linear divergence such
that v�t� is a linear function of t or has singularities in L�.
In addition, v�t� is real when t is real. Furthermore, I
introduce two new real functions �0 � �0�x; y�, z0 �
z0�x; y� such that (for fixed x, y) ��v�t�� � 	�1�
2zv�t��2 � �2�v�t��2
1=2 and �0�t� :� 	�1� 2z0t�2 �
�2�0t�2
1=2 have the same zeros in t, and _v�t� � 0 at these
zeros. Thus we have
 

1

2�z0 � i�0�
� v�1

�
1

2�z� i��

�
; (3.3a)

�d�0 � dz0: (3.3b)

Equation (3.3a) can be interpreted as a variable transfor-
mation under which Eqs. (2.8), (2.7), (2.8), (2.9), (2.10),
(2.11), (2.12), (2.13), (2.14), (2.15), and (2.16) are trans-
formed. We shall use the notations with prime to denote the
transformed functions, e.g. F�t�� F0�t�.

Motivated by [25,28], for a given solution F�t� of (2.14),
(2.15), and (2.16), we select the contour L such that F�t� is
holomorphic on L [ L� and take the kernel K�t� of (3.1) as

 K�t� � F0�t�u�t�F�v�t���1; (3.4)

where the complex �2d� n� � �2d� n� matrix function
u�t� (independent of x, y) is holomorphic in L [ L� and
satisfies

 u�t�>�u�t� � �; u�t� � u��t�; (3.5)

i.e. u�t� 2 O�d; d� n� when t is real.
Lemma 1: If X��t� is a fundamental solution of the RH

problem (3.1), (3.4), and (3.5) with boundary condition

 X��0� � I; (3.6)

then we can consistently define the following complex
functions of t as

 

W1�t� � X���t�
�1�X��t��1 on L [ L�

� ���v�t��=�0�t��X���t��1�X��t��1 on L [ L�;

(3.7a)

 

W2�t� � X>��t�
�1�A0�t�X��t�

�1 on L [ L�

� X>��t�
�1�A�v�t��X��t�

�1 on L [ L�; (3.8a)

 

W3�t�� dX��t�X��t�
�1�X��t��

0�t��X��t�
�1 on L[L�

� dX��t�X��t�
�1�X��t���v�t���X��t�

�1

on L[L�; (3.9a)
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W4�t���A�t�dX��t�X��t��1� tX>��t�
�1�dH0�X��t��1

onL[L�

��A�t�dX��t�X��t��1�v�t�X>��t��1�dH�X��t��1

onL[L�; (3.10a)

and have
 W1�t� � �; (3.7b)

 W2�t� � �A�t�; (3.8b)
 W3�t� � �0�t��; (3.9b)

 W4�t� � t�dH�: (3.10b)
 A��t��A�t� � �02�t��: (3.11)

Where
 H :� H0 � _X��0��; (3.12)

 

�0�t� :� t�0�t��1dH; (3.13a)

A�t� :� I � t�H �H>��: (3.13b)

Proof: From (2.16a), (3.1), (3.4), and (3.5) we obtain

 X���s�
�1�X��s�

�1 � ���v�s��=�0�s��X���s�
�1�X��s�

�1;

s 2 L:

Noticing the properties of the functions X��t�, v�t�, ��t�,
since 	��v�t��=�0�t�
 is nonsingular in L [ L�, the above
equation implies that W1�t� in (3.7a) is consistently defined
and gives an entire function of t. Note that
���v�t��=�0�t��X���t��1�X��t��1 is regular at t � 1, so
W1�t� is equal to a constant matrix. From the boundary
condition (3.6), we get Eq. (3.7b).

To prove (3.8b), we use (2.16b), (3.1), (3.4), and (3.5) to
get
 

X>��s�
�1�A0�s�X��s�

�1 � X>��s�
�1�A�v�s��X��s�

�1;

s 2 L:

This implies that W2�t� is consistently defined and gives an
entire function of t. From the expression of A�v�t�� and the
property of v�t� at t � 1, we conclude that W2�t� is linear
in t. By using (3.6) we obtain the coefficients in this linear
function such that W2�t� turns to �A�t� by definition
(3.13b).

The Eq. (3.9b) is proven as follows. From (2.14), (3.1),
and (3.4) we have
 

dX��s�X��s��1 � X��s��0�s��X��s��1

� dX��s�X��s��1 � X��s���v�s���X��s��1;

s 2 L: (3.14)

Thus the function W3�t� defined in (3.9a) is a meromorphic
function of t and has simple singularity at the zeros of �0�t�
[or, equivalently, ��v�t��]. According to the theory of
meromorphic function, W3�t� can be expressed as U�
t�0�t��1V. By using (3.6) and (3.12) we obtain

 U � 0; V � d _X��0� � dH0� � dH�;

thus W3�t� � t�0�t��1dH�, and this gives (3.9b) by
(3.13a).

To prove (3.10b), we note that from (2.10), (2.13), (3.8a),
(3.8b), and (3.14) we have
 

�A�s�dX��s�X��s�
�1 � sX>��s�

�1�dH0�X��s�
�1

� �A�s�dX��s�X��s�
�1

� v�s�X>��s��1�dH�X��s��1; s 2 L:

Similar to above, W4�t� in (3.10a) is a linear function of t,
and by using (3.6) we get (3.10b).

As for (3.11), we first note that from (2.16) we have
A��t��A�t� � �2�t��. Then from (3.7a), (3.7b), (3.8a),
and (3.8b) it follows that

 A��t��A�t� �
�
X���t�

�1A0��t��X?��t�
�1��1X>��t�

�1�A0�t�X��t�
�1 on L [ L�

X���t�
�1A��v�t���X?��t�

�1��1X>��t�
�1�A�v�t��X��t�

�1 on L [ L�

�

�
X���t�

�1A0��t��A0�t�X��t�
�1 on L [ L�

��0�t�=��v�t���X���t��1A��v�t���A�v�t��X��t��1 on L [ L�

� �02�t��:

Theorem 1: Let X��t� � X��x; y; t� be a fundamental
solution of the RH problem (3.1), (3.4), (3.5), and (3.6);
then the complex matrix function given by

 F�t� � X��t�F0�t� in L [ L�

� X��t�F�v�t��u
�1�t� in L [ L�

(3.15)

is holomorphic on L [ L� and satisfies
 

dF�t� � �0�t��F�t�; (3.16a)

A�t�dF�t� � tdH�F�t�; (3.16b)

 

F�0� � I; (3.17a)
_F�0� � H�; (3.17b)

�0�t�F�t���F�t� � �; (3.17c)

F�t�>�A�t�F�t� � �: (3.17d)

Proof: Equation (3.16a) is derived from (2.14), (3.9a),
(3.9b), and (3.15); (3.16b) is deduced from (2.13), (2.14),
(3.8a), (3.8b), (3.10a), (3.10b), and (3.15); (3.17a) follows
simply from (2.15a), (3.6), and (3.15); (3.17b) follows from

YA-JUN GAO PHYSICAL REVIEW D 77, 044041 (2008)

044041-4



Eqs. (2.15), (3.6), and (3.15) and definition (3.12); (3.17c)
follows from (2.16a), (3.7a), (3.7b), and (3.15); (3.17d) is
derived from (2.16b), (3.8a), (3.8b), and (3.15).

Theorem 2: The new complex function H given by
(3.12) is an H potential of the considered heterotic string
theory. Explicitly, H satisfies
 

2�z0 � �0��dH � �H �H>��dH; (3.18a)

H �Hy � �2�z0; (3.18b)

M :� Re�H�; M> � M; (3.18c)

M�M � �02�: (3.18d)

Proof: To prove (3.18a), note that Eqs. (3.13a), (3.16a),
and (3.16b) imply �0�t�dF�t� � A�t�dF�t�. Thus from
(2.11) and (3.13b) we have

 2�z0 � �0��dF�t� � �H �H>��dF�t�:

Taking the t derivative of the above equation and then
setting t � 0, we obtain (3.18a) by using (3.17b).
Equation (3.18b) is derived by taking the t derivative of
Eq. (3.17c) and then setting t � 0 and noting (3.17a) and
(3.17b). Equation (3.18c) is a trivial implication of (3.18b).
To prove (3.18d), note that (3.18b) and (3.18c) imply
A�t� � �1� 2tz0�I � 2tM�. Thus from (3.11) we have
�1� 2tz0�2�� 4t2�M�M� � �0�t�2�; this gives
(3.18d).

B. RH transformation for linear system (2.22) and (2.23)

Here we need another scalar function ~v�w�, which has
the same properties as v�t� but the variable t is replaced by
w, and according to the properties of ~v�w� we may write

 ~v�w�jw!1 � aw; a > 0 �real number�: (3.19)

Relating to ~v�w� we introduce two real functions �00 �
�00�x; y�, z00 � z00�x; y� such that (for fixed x, y) ~��~v�w�� �
	�~v�w� � 2z�2 � �2��2
1=2 and ~�00�t� :� 	�w� 2z00�2 �
�2�00�2
1=2 have the same zeros in w, and _~v�w� � 0 at these
zeros. Thus we have
 

2�z00 � i�00� � ~v�1�2�z� i���; (3.20a)
�d�00 � dz00: (3.20b)

Equation (3.20a) can be interpreted as another variable
transformation; the corresponding transformed functions
will be denoted with double prime ‘‘00,’’ e.g. ~F�w��
~F00�w�.

Consider an RH problem relating to (2.22) and (2.23) as
follows. We use ~L and ~L� in the w plane. For a given
solution ~F�w� of (2.22) and (2.23), we select the contour ~L
such that ~F�w� is holomorphic on ~L [ ~L� and take the
kernel of (3.1) as

 

~K�w� � a�1=2 ~F00�w�~u�w� ~F�~v�w���1; (3.21)

where the positive real number a is the same as in (3.19),

and ~u�w� has the same properties as u�t� except that t is
replaced by w.

By virtue of the RH problem (3.1) with kernel (3.21), we
can obtain another RH transformation for the heterotic
string theory. First, we have the following.

Lemma 2: Let ~X��w� be a fundamental solution of the
RH problem (3.1) and (3.21) with boundary condition

 

~X ��1� � I; (3.22)

then we can consistently define the following functions of
w as
 

~W1�w� � ~X���w�
�1� ~X��w��1 on ~L [ ~L�

� a�1�~��~v�w��=~�00�w�� ~X���w��1� ~X��w��1

on ~L [ ~L�; (3.23a)

 

~W2�w� � ~X>��w�
�1� ~A00�w� ~X��w��1 on ~L [ ~L�

� a�1 ~X>��w�
�1� ~A�~v�w�� ~X��w�

�1 on ~L [ ~L�;

(3.24a)

 

~W3�w� � d ~X��w� ~X��w�
�1 � ~X��w�~�

00�w�� ~X��w�
�1

on ~L [ ~L�

� d ~X��w� ~X��w�
�1 � ~X��w�~��~v�w��� ~X��w�

�1

on ~L [ ~L�; (3.25a)

 

~W4�w� � � ~A�w�d ~X��w� ~X��w�
�1

� ~X>��w�
�1�dH00� ~X��w�

�1 on ~L [ ~L�

� � ~A�w�d ~X��w� ~X��w��1

� a�1 ~X>��w��1�dH� ~X��w��1 on ~L [ ~L�;

(3.26a)

and have

 

~W 1�w� � �; (3.23b)

 

~W 2�w� � � ~A�w�; (3.24b)

 

~W 3�w� � ~�00�w��; (3.25b)

 

~W 4�w� � �d ~H�: (3.26b)

 

~A��w�� ~A�w� � ~�002�w��: (3.27)

Where

 

~H :� a�1H00 � @	 ~X��w�j	�0�; 	 :� w�1; (3.28)
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~�00�w� :� ~�00�w��1d ~H; (3.29a)
~A�w� :� w� � ~H � ~H>��: (3.29b)

Proof: The proof is similar to that of Lemma 1.
However, here the boundary conditions at w � 1 such as
(3.19) and (3.22) are used.

Theorem 3: The complex matrix function given by
 

~F�w� � a�1=2 ~X��w� ~F
00�w� in ~L [ ~L�

� ~X��w� ~F�~v�w��~u�w�
�1 in ~L [ ~L� (3.30)

is holomorphic on L [ L� and satisfies
 

d ~F�w� � ~�00�w�� ~F�w�; (3.31a)
~A�w�d ~F�w� � d ~H� ~F�w�; (3.31b)

 

~�00�w� ~F�w��� ~F�w� � �; (3.32a)

~F�w�>� ~A�w� ~F�w� � �: (3.32b)

Proof: The proof is similar to that of Theorem 1.
Theorem 4: The new complex function ~H given by

(3.28) is an H potential of the considered heterotic string
theory. Explicitly, ~H satisfies
 

2�z00 � �00��d ~H � � ~H � ~H>��d ~H; (3.33a)

~H � ~Hy � �2�z00; (3.33b)

~M :� Re� ~H�; ~M> � ~M; (3.33c)
~M� ~M � �002�: (3.33d)

Proof: First we note that Eqs. (3.29a) and (3.31a) imply

 

~� 00�w�d ~F�w� ~F�w��1 � d ~H�: (3.34)

To prove (3.33a), use (3.31a) and (3.31b) to get
~A�w�d ~F�w� � ~�00�w�d ~F�w�. Multiplying this equation
from the left by ~�00�w� and from the right by ~F�w��1,
then we obtain (3.33a) by using (3.34) and the definitions
of ~A�w� and ~�00�w�.

To prove (3.33b), note that from (2.19), (2.20), and
(3.32a) we have

 2�dz00 � 	~�00�w�d ~F�w� ~F�w��1�
�

� ~�00�w�d ~F�w� ~F�w��1�:

This, by using (3.34), is followed by d ~H� d ~Hy �
�2�dz00 and then gives (3.33b) by selecting some suitable
integral constant.

The proof of (3.33c) and (3.33d) is similar to that of
(3.18c) and (3.18d).

IV. EQUIVALENT INTEGRAL EQUATIONS AND
GROUP PROPERTIES OF THE RH

TRANSFORMATIONS

First, noting the analytic property of X��t� in (3.15) on
L [ L� (including 1), we have

 

1

2
i

Z
L

X��s�
s�s� t�

ds � 0; t 2 L�: (4.1)

Substituting Eq. (3.15) into (4.1), it follows that

 

1

2
i

Z
L

F�s�u�s�F�v�s���1

s�s� t�
ds � 0; t 2 L�; (4.2)

subject to the condition F�0� � I.
As for RH transformation (3.30), by condition (3.22) we

have

 

1

2
i

Z
~L

~X��s�
�s� w�

ds � I; w 2 ~L�: (4.3)

Now from (3.30) we obtain

 

1

2
i

Z
~L

~F�s�~u�s� ~F�~v�s���1

�s� w�
ds � I; w 2 ~L�: (4.4)

In order to show the group structure of the above RH
transformations explicitly, from the properties of v�t�, we
introduce ��t� :� v�1�t� on the contour L and define the
action of �u; �� on any function ��t� as

 �u; ����t� :� u�t�����1�t�� � u�t���v�t��: (4.5)

Then the integral Eq. (4.2) can be rewritten as

 

1

2
i

Z
L

F�s��u; ��F�s��1

s�s� t�
ds � 0; t 2 L�: (4.6)

If we carry out the RH transformation 2 times successively
and denote

 �u; ��: F�t� ! F�t�; �u1; �1�: F�t� ! F�t�; (4.7)

then from (3.15) [or equivalently (4.6)] we have
 

1

2
i

Z
L

F�s��u1; �1��u; ��F�s��1

s�s� t�
ds

�
1

2
i

Z
L

F�s�	u1�s�u�v1�s��
F�v�v1�s����1

s�s� t�
ds

�
1

2
i

Z
L

F�s��u1��1
�u�; �1��F�s�

�1

s�s� t�
ds � 0;

t 2 L�;

where we have used the homomorphism �: f�g ! Autfug
defined by

 �: �! ��; ��: u�t� ! ���u��t� � u���1�t��: (4.8)

Thus, we have an RH transformation �u2; �2�: F�t� ! F�t�
such that
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 �u2; �2� � �u1; �1��u; �� � �u1��1
�u�; �1��: (4.9)

Similarly, by introducing ~��w� :� ~v�1�w� on the con-
tour ~L and defining

 �~u; ~�� ~��w� :� ~u�w� ~��~��1�w�� � ~u�w� ~��~v�w��; (4.10)

we obtain an RH transformation �~u2; ~�2�: ~F�w� ! ~F�w�
such that

 �~u2; ~�2� � �~u1; ~�1��~u; ~�� � �~u1 ~�~�1
�~u�; ~�1

~��: (4.11)

According to the loop group theory [30], the composi-
tion laws (4.9) and (4.11) show that the RH transformations
(3.15) [or (4.2)] and (3.30) [or (4.4)], joined together,
provide a representation of the semidirect product of the

affine Kac-Moody group O�d; d� n�b and Virasoro group.
As special cases, when v�t� � t, ~v�w� � w, we obtain a

representation of the Kac-Moody group O�d; d� n�b .

When u�t� � I, ~u�w� � I, we get a representation of the
Virasoro group. These results demonstrate that the heter-
otic string theory under consideration possesses rich sym-
metry structures.

V. INFINITESIMAL RH TRANSFORMATIONS

In order to find the relationship between the results in the
present paper and that in [22], we discuss the infinitesimal
forms of the above RH transformations.

Setting v�t� � t and considering the following infinitesi-
mal transformation

 u�t� � I � �u�t�; F�t� � F�t� � �F�t�;

then by (2.15a), Eq. (4.2) becomes

 �F�t�F�t��1��
t

2
i

Z
L

F�s��u�s�F�s��1

s�s� t�
ds; t2 L�:

(5.1)

Noticing the properties of u�t�, without loss of generality,
we can select �u�s� � ��k�� u�s� � T�s

�k (k � 0). Where
T� � Ta�

a, Ta are generators of o�d; d� n� [the Lie
algebra ofO�d; d� n�],�a are infinitesimal real constants.
Substituting these into (5.1), we have

 ��k�� F�t�F�t��1��
t

2
i

Z
L

s�kF�s�T�F�s�
�1

s�s� t�
ds; t2L�;

then the parameterized transformation ���t
0�F�t� �P

1
k�0 t

0k��k�� F�t� (t0 2 L�) is given by

 

���t0�F�t�F�t��1 ��
t

2
i

Z
L

X1
k�0

t0kF�s�T�F�s�
�1

sk�1�s� t�
ds

��
t

2
i

Z
L

F�s�T�F�s��1

�s� t0��s� t�
ds

�
t

t� t0
	F�t0�T�F�t

0��1�F�t�T�F�t�
�1
:

(5.2)

Similarly, taking ~v�w� � w and considering the infini-
tesimal transformation ~u�w� � I � ~� ~u�w�, ~F�w� �
~F�w� � ~� ~F�w�, then (4.4) becomes

 

~� ~F�w� ~F�w��1 � �
1

2
i

Z
~L

~F�s�~� ~u�s� ~F�s��1

�s� w�
ds;

w 2 ~L�: (5.3)

Selecting ~� ~u�s� � ~��k�� ~u�s� � T�s�k (k � 1) and denoting
the corresponding ~� ~F�w� by ~��k�� ~F�w�, then from (5.3), the
parameterized infinitesimal transformation ~���w0� ~F�w� �P
1
k�1 w

0k ~��k�� ~F�w� (w0 2 ~L�) is given by

 

~� ��w
0� ~F�w� ~F�w��1 �

w0

w� w0
	 ~F�w0�T� ~F�w0��1

� ~F�w�T� ~F�w��1
: (5.4)

The RH transformations (4.2) and (4.4), in fact, contain
more symmetries of the heterotic string theory. To show
this, we need ‘‘cross’’ infinitesimal variations ~�F�t� and
� ~F�w� brought about by u�t� � I � ~�u�t� and ~u�w� � I �
�~u�w�, respectively. Considering the relation between t
and w in (2.14) and (2.22), we can select ~��k�� u�t� � T�tk

(k � 1) and ��k�� ~u�w� � T�wk (k � 0). Correspondingly,
Eqs. (5.1) and (5.3) give, respectively,

 

~� �k�� F�t�F�t��1 � �
t

2
i

Z
L

skF�s�T�F�s��1

s�s� t�
ds;

��k�� ~F�w� ~F�w��1 � �
1

2
i

Z
~L

sk ~F�s�T� ~F�s��1

�s� w�
ds:

To obtain explicit expressions of the corresponding pa-
rameterized cross infinitesimal transformations
~���w�F�t� �

P
1
k�1 w

k ~��k�� F�t� and ���t� ~F�w� �P
1
k�0 t

k��k�� ~F�w�, we note that since F�t�, ~F�w� have differ-
ent analytic properties, from (2.14), (2.15), (2.16), (2.22),
and (2.23) we can set

 

~F�w�jw�1=t � t1=2F�t�; F�t�jt�1=w � w1=2 ~F�w�:

(5.5)

Thus we have
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~� ��w�F�t�F�t�
�1 � �

tw
2
i

Z
L

F�s�T�F�s��1

�1� sw��s� t�
ds

�
tw

1� tw
	 ~F�w�T� ~F�w��1

� F�t�T�F�t�
�1
; (5.6)

 ���t� ~F�w� ~F�w�
�1 � �

1

2
i

Z
~L

~F�s�T� ~F�s��1

�1� ts��s� w�
ds

�
1

1� tw
	F�t�T�F�t��1

� ~F�w�T� ~F�w��1
: (5.7)

Next we consider the cases u�t� � I and ~u�w� � I of the
transformations (4.2) and (4.4). We first calculate infini-
tesimal transformations brought about by
 

v�t� � t� ��t�; (5.8a)

~v�w� � w� ~��w�; (5.8b)

where ��t� and ~��w� are infinitesimal functions of t and w,
respectively. For (5.8a), we have
 

F�t� � F�t� ��F�t�;

F�v�t���1 � F�t��1 � @t	F�t��1
��t�: (5.9)

Substituting u�t� � I and (5.9) into (4.2), we obtain

 �F�t�F�t��1 �
t

2
i

Z
L

_F�s�F�s��1

s�s� t�
��s�ds; t 2 L�:

(5.10)

Noticing the properties of v�t�, without loss of generality,
we select ��s� � ��k�
 �s� � 
s1�k (k � 0) and denote the
corresponding �F�t� by ��k�
 F�t�, where 
 is an infinitesi-
mal real constant; then from (5.10), the parameterized
transformation �
�t

0�F�t� �
P
1
k�0 t

0k��k�
 F�t� (t0 2 L�) is
given by

 �
�t
0�F�t�F�t��1 �


t
2
i

Z
L

s _F�s�F�s��1

�s� t0��s� t�
ds

�

t
t� t0

	t _F�t�F�t��1 � t0 _F�t0�F�t0��1
:

(5.11)

Similarly, for (4.4) and (5.8b), we obtain

 

~� ~F�w� ~F�w��1�
1

2
i

Z
~L

_~F�s� ~F�s��1

�s�w�
~��s�ds; w2 ~L�:

(5.12)

Selecting ~��s� � ~��k�� �s� � �s1�k (k � 1) and denoting
the corresponding ~� ~F�w� by ~��k�� ~F�w� (� is an infinitesi-
mal real constant), then from (5.12), the parameterized
transformation ~���w0� ~F�w� �

P
1
k�1 w

0k ~��k�� ~F�w� (w0 2
~L�) is given by

 

~���w0� ~F�w� ~F�w��1 � �w0
w�w0 	w

_~F�w� ~F�w��1

� w0 _~F�w0� ~F�w0��1
:
(5.13)

As before, we also need cross infinitesimal transforma-
tions ~�F�t� and � ~F�w� brought about by variations v�t� �
t� ~��t�, ~v�w� � w� ��w�. In these cases, the RH trans-
formations (4.2) and (4.4) give

 

~�F�t�F�t��1 �
t

2
i

Z
L

_F�s�F�s��1

s�s� t�
~��s�ds; (5.14)

 � ~F�w� ~F�w��1 �
1

2
i

Z
~L

_~F�s� ~F�s��1

�s� w�
��s�ds: (5.15)

We select ~��t� � ~��k�� �t� � ��t1�k (k � 1), ��w� �
��k�
 �w� � �
w1�k (k � 0) and denote the corresponding
transformations by ~��k�� F�t�, ��k�
 ~F�w�, respectively. In ad-
dition, from relations in (5.5), we have
 

	 _~F�w� ~F�w��1
jw�1=t � �t
�
t _F�t�F�t��1 �

1

2

�
;

	 _F�t�F�t��1
jt�1=w � �w
�
w _~F�w� ~F�w��1 �

1

2

�
: (5.16)

Thus the parameterized transformations ~���w�F�t� �P
1
k�1 w

k ~��k�� F�t� and �
�t� ~F�w� �
P
1
k�0 t

k��k�
 ~F�w� are
given, respectively, by
 

~���w�F�t�F�t�
�1 � �

�tw
2
i

Z
L

s _F�s�F�s��1

�1� sw��s� t�
ds

�
�tw
tw� 1

�
t _F�t�F�t��1

� w _~F�w� ~F�w��1 �
1

2

�
; (5.17)

 

�
�t� ~F�w� ~F�w��1 � �



2
i

Z
~L

s _~F�s� ~F�s��1

�1� st��s� w�
ds

�



tw� 1

�
w _~F�w� ~F�w��1

� t _F�t�F�t��1 �
1

2

�
: (5.18)

Finally, we give the corresponding infinitesimal trans-
formations of �, z. Writing

 �� :� z� i�; �0� :� z0 � i�0;

�00� :� z00 � i�00; t� :� �2����1;

w� :� 2��;

(5.19)

then from (3.3a) and (5.8a), we have
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��k�
 �� � ��0� � ���
�k�
�
� �

1

2t2�
��k�
 �t�� � 
���2���k;

k � 0;

�
�t��� �
X1
k�0

tk��k�
 �� � 
��
X1
k�0

tk�2���
k

� 

��

1� 2t��
;

therefore

 �
�t�z �



��t�2
	z�1� 2tz� � 2t�2
;

�
�t�� �



��t�2
�:

(5.20)

Similarly, from (3.20a), (5.8b), and (5.19), we obtain
 

~��k�� �� � ��
00
� � ���

�k�
��� � �

1

2
~��k�� �w�� � �

�
2
w1�k
�

� �����2���
�k; k � 1;

~���w��� �
X1
k�1

wk ~��k�� �� � ����
X1
k�1

wk�2���
�k

� �w
��

w� 2��
;

thus

 

~� ��w�z �
�w

~��w�2
	z�w� 2z� � 2�2
;

~���w�� �
�w2

~��w�2
�:

(5.21)

Equations (5.2), (5.4), (5.6), (5.7), (5.11), (5.13), (5.17),
and (5.18) give exactly the same infinitesimal transforma-

tions of F�t�, ~F�w� and the associated H potentials [from
Eq. (2.15)] as constructed in [22], while (5.20) and (5.21)
give the same infinitesimal transformations of �, z as in
[22]. These results demonstrate that the pair of RH trans-
formations in this paper provide exponentiations of all the
infinitesimal symmetry transformations given in [22].

VI. SUMMARY AND DISCUSSION

The symmetry structures of the dimensionally reduced
heterotic string theory are studied further. We construct a
pair of RH transformations (3.15) and (3.30) [or equiva-
lently (4.2) and (4.4)] relating to the pair of HE-type linear
systems (2.14), (2.15), (2.16), (2.22), and (2.23). These RH
transformations generate new F and H potentials from old
ones and give an infinite-dimensional symmetry transfor-
mation group of the considered heterotic string theory. This
symmetry group is verified to have the structure of the
semidirect product of the complete Kac-Moody groupdO�d; d� n� and Virasoro group. [However, the transfor-
mation (3.15)—or equivalently (4.2)—gives the ‘‘positive
half’’ symmetry subgroup only.] Moreover, we find that the
infinitesimal forms of these RH transformations give ex-
actly the same as the infinitesimal symmetry transforma-
tions in [22]; these show that the RH transformations in the
present paper provide us with exponentiations of all infini-
tesimal symmetries in [22]. Of course, the RH transforma-
tions constructed here give out symmetry transformations
in finite form, which are more important and useful for
theoretic studies and new solution generation, etc.
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