王健
王健,副教授,硕士生导师。 主要研究方向: 机器视觉,深度学习,工业智能安全监控技术等。曾在《IEEE Trans. on Automation Science and Engineering》、《Journal of Circuits, Systems, and Computers》、《International Journal of Machine Learning and Cybernetics》、《控制与决策》等国内外权威杂志和重要国际会议上发表论文近50篇,其中多篇被SCI/EI检索。授权专利20余项,出版专著2部,获得省级及市级奖励各2项,主持国家自然科学基金1项,省部级项目3项。指导学生获国家级和省级大学生创新创业和专业类竞赛项目30余项。 联系方式: ganard@163.com,15940681573。 代表性论文: [1]Sun, Z., Wang, J. & Li, Y. RAMFAE: a novel unsupervised visual anomaly detection method based on autoencoder. Int. J. Mach. Learn. & Cyber. 15, 355–369 (2024). https://doi.org/10.1007/s13042-023-01913-7(SCI收录) [2]Jian Wang , Yakun Li and Zhiyan Han. A Novel Fault Detection Method Based on One-Dimension Convolutional Adversarial Autoencoder (1DAAE). Processes 2023, 11, 384. https://doi.org/10.3390/pr11020384 (SCI收录) [3]Juan Nan, Jian Wang, Hao Wu, Kun Li. Optimized Extreme Learning Machine by an Improved Harris Hawks Optimization Algorithm for Mine Fire Flame Recognition. Mining, Metallurgy & Exploration, Volume 40, pages 367–388, (2023). https://doi.org/10.1007/s42461-022-00719-5(SCI收录) [4] Wang Jian, Feng Jian, Han Zhiyan, Discriminative feature selection based on imbalance svdd for fault detection of semiconductor manufacturing processes, Journal of Circuits, Systems and Computers, 第25卷,第11期,1-21页,2016 (SCI收录) [5]Feng Jian, Wang Jian, Zhang huaguang, Han Zhiyan. Fault diagnosis method of joint fisher discriminant analysis based on the local and global manifold learning and its kernel version[J]. IEEE Trans. on Automation Science and Engineering, 第13卷,第1期,122-133页,2016 (SCI收录). |